Classification of Brain MRI Images using Computational Intelligent Techniques

نویسندگان

  • Saurabh Shah
  • N. C. Chauhan
  • Stefan Bauer
  • Roland Wiest
  • Lutz-P Nolte
  • Mauricio Reyes
  • Mihran Tuceryan
  • Anil K. Jain
  • C. H. Chen
  • L. F. Pau
  • P. S. P. Wang
  • Evangelia I. Zacharaki
  • Sumei Wang
  • Sanjeev Chawla
  • Dong Soo Yoo
  • Ronald Wolf
  • Elias R. Melhem
  • Christos Davatzikos
  • Yi-hui Liu
  • Manita Muftah
  • Tilak Das
  • Li Bai
  • Keith Robson
  • Dorothee Auer
  • Baidya Nath Saha
  • Nilanjan Ray
  • Russell Greiner
  • Albert Murtha
  • Lalit M. Aggarwal
چکیده

MRI of brain can reveal important abnormalities and brain diseases such as brain tumours if these MRI images can be processed properly by intelligent algorithms. As the MRI images have low contrast and contain noise; it is difficult to precisely separate the region of interest between tumour and normal brain tissues. In this paper, computationally intelligent techniques have been presented to classify brain MRI images into normal and abnormal (having tumour) ones. The first method uses Gabor filters to extract the texture features from magnetic resonance brain images and then performs classification between normal and abnormal images using Support Vector Machine (SVM). A second method is also presented which uses novel histogram comparison method of left and right halves of brain based on Bhattacharya coefficient and finds bounding box as region of interest (ROI). Texture features are extracted using Gabor filters from this ROI. Finally the classification of images was performed using Artificial Neural

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Hippocampal Atrophy Studying in Alzheimer's Disease Diagnosis Using Brain MRI Images

Background and Aim: For effective treatment of Alzheimer's disease (AD), it is important to accurately diagnosis of AD and its earlier stage, Mild Cognitive Impairment (MCI). One of the most important approaches of early detection of AD is to measure atrophy, which uses various kinds of brain scans, such as MRI. The main objective of the current research was to provide a computerized diagnostic...

متن کامل

MRI Brain Tumor Classification Using SVM and Histogram Based Image Segmentation

A brain tumor arises due to an abnormal growth of cells that have proliferated in an uncontrolled manner. When normal cells grow old or get injured, they either undergo cell death or get repaired by own. Research shows that people affected by brain tumors die due to their inaccurate detection. In this paper,proposed an intelligent classification technique to recognize normal and abnormal MRI br...

متن کامل

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

متن کامل

Optimization of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training ANFIS with different repetitions

Introduction: One of the leading causes of death among people is brain tumors. Accurate tumor classification leads to appropriate decision-making and providing the most efficient treatment to the patients. This study aims to optimize of the brain tumor MR images classification accuracy using the optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015