Heterogenized Water Oxidation Catalysts Prepared by Immobilizing Kläui-Type Organometallic Precursors.
نویسندگان
چکیده
An efficient heterogenized water oxidation catalyst (2_TiO2 ) has been synthesized by immobilizing the Kläui-type organometallic precursor [Cp*Ir{P(O)(OH)2 }3 ]Na (2, Cp*=1,2,3,4,5-pentamethylcyclopentadienyl ligand) onto rutile TiO2 . Iridium is homogeneously distributed at the molecular and atomic/small cluster level in 2_TiO2 and 2'_TiO2 (solid catalyst recovered after the first catalytic run), respectively, as indicated by STEM-HAADF (scanning transmission electron microscopy - high angle annular dark field) studies. 2'_TiO2 exhibits TOF values up to 23.7 min(-1) in the oxidation of water to O2 driven by NaIO4 at nearly neutral pH, and a TON only limited by the amount of NaIO4 used, as indicated by multiple run experiments. Furthermore, while roughly 40 % leaching is observed during the first catalytic run, 2'_TiO2 does not undergo any further leaching even when in contact with strongly basic solutions and completely maintains its activity for thousands of cycles. NMR studies, in combination with ICP-OES (inductively coupled plasma optical emission spectrometry), indicate that the activation of 2_TiO2 occurs through the initial oxidative dissociation of PO4 (3-) , ultimately leading to active centers in which a 1:1 P/Ir ratio is present (derived from the removal of two PO4 (3-) units) likely missing the Cp* ligand.
منابع مشابه
Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors†
Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust wateroxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, princi...
متن کاملElectronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets.
A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)CuII]2-, 22-, (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)CuII]2- water oxidation catalyst, 12- (L is o-phenylenebis(oxamidate)). The catalytic performa...
متن کاملPublications – João Costa Pessoa - 2011
An account of recent research of the groups of Costa Pessoa and Maurya is presented, focusing on the preparation of several polystyrene anchored complexes and their use as catalysts in functionalization of alkenes. The procedures for covalently binding the ligands or ligand precursors are outlined, as well as for coordination of the metal ions. Instrumental techniques used for the characterizat...
متن کاملA molecular catalyst for water oxidation that binds to metal oxide surfaces
Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this hete...
متن کاملEffects of the Solvent and Calcination Temperature on LaFeO3 Catalysts for Methanol Oxidation
In this work, two types of solvents ethanol or water were used in preparation of the LaFeO3 catalysts by citrate sol gel method. The obtained samples were subjected to various calcination temperatures in order to study the catalytic activity and stability for methanol electro-oxidation by XRD, cyclic voltammetry and chronoamperometry. The crystallinity of the LaFeO3 ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry
دوره 22 38 شماره
صفحات -
تاریخ انتشار 2016