Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells.

نویسندگان

  • J C Conover
  • N Y Ip
  • W T Poueymirou
  • B Bates
  • M P Goldfarb
  • T M DeChiara
  • G D Yancopoulos
چکیده

Ciliary neurotrophic factor was discovered based on its ability to support the survival of ciliary neurons, and is now known to act on a variety of neuronal and glial populations. Two distant relatives of ciliary neurotrophic factor, leukemia inhibitory factor and oncostatin M, mimic ciliary neurotrophic factor with respect to its actions on cells of the nervous system. In contrast to ciliary neurotrophic factor, leukemia inhibitory factor and oncostatin M also display a broad array of actions on cells outside of the nervous system. The overlapping activities of leukemia inhibitory factor, oncostatin M and ciliary neurotrophic factor can be attributed to shared receptor components. The specificity of ciliary neurotrophic factor for cells of the nervous system results from the restricted expression of the alpha component of the ciliary neurotrophic factor receptor complex, which is required to convert a functional leukemia inhibitory factor/oncostatin M receptor complex into a ciliary neurotrophic factor receptor complex. The recent observation that the alpha component of the ciliary neurotrophic factor receptor complex is expressed by very early neuronal precursors suggested that ciliary neurotrophic factor may act on even earlier precursors, particularly on cells previously thought to be targets for leukemia inhibitory factor action. Here we show the first example of ciliary neurotrophic factor responsiveness in cells residing outside of the nervous system by demonstrating that embryonic stem cells express a functional ciliary neurotrophic factor receptor complex, and that ciliary neurotrophic factor is similar to leukemia inhibitory factor in its ability to maintain the pluripotentiality of these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell based therapies in retinal diseases

Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...

متن کامل

Matrix remodeling maintains embryonic stem cell self-renewal by activating Stat3.

While a variety of natural and synthetic matrices have been used to influence embryonic stem cell (ESC) self-renewal or differentiation, and ESCs also deposit a rich matrix of their own, the mechanisms behind how extracellular matrix affects cell fate are largely unexplored. The ESC matrix is continuously remodeled by matrix metalloproteinases (MMPs), a process that we find is enhanced by the p...

متن کامل

Neurotrophic factors promote cholinergic differentiation in human embryonic stem cell-derived neurons

Cholinergic neurotransmission is essential for many important functions in the brain, including cognitive mechanisms. Here we demonstrate that human embryonic stem (hES) cells differentiate into a population of neuronal cells that express the cholinergic enzyme choline acetyltransferase and homeobox proteins specifying neuronal progenitors of ventral telencephalic lineage. These differentiated ...

متن کامل

Mimicking the Neurotrophic Factor Profile of Embryonic Spinal Cord Controls the Differentiation Potential of Spinal Progenitors into Neuronal Cells

Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progen...

متن کامل

Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 119 3  شماره 

صفحات  -

تاریخ انتشار 1993