Counting Classes and the Fine Structure between NC1 and L

نویسندگان

  • Samir Datta
  • Meena Mahajan
  • B. V. Raghavendra Rao
  • Michael Thomas
  • Heribert Vollmer
چکیده

The class NC of problems solvable by bounded fan-in circuit families of logarithmic depth is known to be contained in logarithmic space L, but not much about the converse is known. In this paper we examine the structure of classes in between NC and L based on counting functions or, equivalently, based on arithmetic circuits. The classes PNC and C=NC, defined by a test for positivity and a test for zero, respectively, of arithmetic circuit families of logarithmic depth, sit in this complexity interval. We study the landscape of Boolean hierarchies, constant-depth oracle hierarchies, and logarithmic-depth oracle hierarchies over PNC and C=NC. We provide complete problems, obtain the upper bound L for all these hierarchies, and prove partial hierarchy collapses. In particular, the constant-depth oracle hierarchy over PNC collapses to its first level PNC, and the constant-depth oracle hierarchy over C=NC collapses to its second level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

An algorithmic meta theorem for a logic and a class C of structures states that all problems expressible in this logic can be solved efficiently for inputs from C. The prime example is Courcelle’s Theorem, which states that monadic second-order (mso) definable problems are linear-time solvable on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state that mso-def...

متن کامل

Nondeterministic NC1 Computation

We deene the counting classes #NC 1 , GapNC 1 , PNC 1 and C = NC 1. We prove that boolean circuits, algebraic circuits, programs over non-deterministic nite automata, and programs over constant integer matrices yield equivalent deenitions of the latter three classes. We investigate closure properties. We observe that #NC 1 #L, that PNC 1 L, and that C = NC 1 L. Then we exploit our nite automato...

متن کامل

Beyond first order logic: From number of structures to structure of numbers: Part II

We study the history and recent developments in nonelementarymodel theory focusing on the framework of abstractelementary classes. We discuss the role of syntax and semanticsand the motivation to generalize first order model theory to nonelementaryframeworks and illuminate the study with concrete examplesof classes of models. This second part continues to study the question of catecoricitytrans...

متن کامل

Model-Theoretic Characterizations of Boolean and Arithmetic Circuit Classes of Small Depth

In this paper we give a characterization of both Boolean and arithmetic circuit classes of logarithmic depth in the vein of descriptive complexity theory, i.e., the Boolean classes NC1, SAC1 and AC1 as well as their arithmetic counterparts #NC1, #SAC1 and #AC1. We build on Immerman’s characterization of constant-depth polynomial-size circuits by formulae of first-order logic, i.e., AC0 = FO, an...

متن کامل

An Isomorphism Theorem for Circuit Complexity

We show that all sets complete for NC1 under AC0 reductions are isomorphic under AC0computable isomorphisms. Although our proof does not generalize directly to other complexity classes, we do show that, for all complexity classes C closed under NC1-computable many-one reductions, the sets complete for C under NC0 reductions are all isomorphic under AC0-computable isomorphisms. Our result showin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 417  شماره 

صفحات  -

تاریخ انتشار 2010