Some Relational Structures with Polynomial Growth and their Associated Algebras I: Quasi-Polynomiality of the Profile
نویسندگان
چکیده
The profile of a relational structure R is the function φR which counts for every integer n the number φR(n), possibly infinite, of substructures of R induced on the n-element subsets, isomorphic substructures being identified. If φR takes only finite values, this is the Hilbert function of a graded algebra associated with R, the age algebra KA(R), introduced by P. J. Cameron. In this paper we give a closer look at this association, particularly when the relational structure R admits a finite monomorphic decomposition. This setting still encompass well-studied graded commutative algebras like invariant rings of finite permutation groups, or the rings of quasi-symmetric polynomials. We prove that φR is eventually a quasi-polynomial, this supporting the conjecture that, under mild assumptions on R, φR is eventually a quasi-polynomial when it is bounded by some polynomial.
منابع مشابه
Some Relational Structures with Polynomial Growth and Their Associated Algebras
The profile of a relational structure R is the function φR which counts for every integer n the number, possibly infinite, φR(n) of substructures of R induced on the n-element subsets, isomorphic substructures being identified. If φR takes only finite values, this is the Hilbert function of a graded algebra associated with R, the age algebra K.A(R), introduced by P. J. Cameron. In this paper, w...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملQ-systems as Cluster Algebras Ii: Cartan Matrix of Finite Type and the Polynomial Property
We define the cluster algebra associated with the Q-system for the Kirillov-Reshetikhin characters of the quantum affine algebra Uq(bg) for any simple Lie algebra g, generalizing the simply-laced case treated in [Kedem 2007]. We describe some special properties of this cluster algebra, and explain its relation to the deformed Q-systems which appeared on our proof of the combinatorial-KR conject...
متن کاملSome relations between Kekule structure and Morgan-Voyce polynomials
In this paper, Kekule structures of benzenoid chains are considered. It has been shown that the coefficients of a B_n (x) Morgan-Voyce polynomial equal to the number of k-matchings (m(G,k)) of a path graph which has N=2n+1 points. Furtermore, two relations are obtained between regularly zig-zag nonbranched catacondensed benzenid chains and Morgan-Voyce polynomials and between regularly zig-zag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 20 شماره
صفحات -
تاریخ انتشار 2013