Calcium triggers folding of lipoprotein lipase into active dimers.

نویسندگان

  • Liyan Zhang
  • Aivar Lookene
  • Gengshu Wu
  • Gunilla Olivecrona
چکیده

The active form of lipoprotein lipase (LPL) is a noncovalent homodimer of 55-kDa subunits. The dimer is unstable and tends to undergo irreversible dissociation into inactive monomers. We noted that a preparation of such monomers slowly regained traces of activity under assay conditions with substrate, heparin, and serum or in cell culture medium containing serum. We therefore studied the refolding pathway of LPL after full denaturation in 6 M guanidinium chloride or after dissociation into monomers in 1 M guanidinium chloride. In crude systems, we identified serum as the factor promoting reactivation. Further investigations demonstrated that Ca2+ was the crucial component in serum for reactivation of LPL and that refolding involved at least two steps. Studies of far-UV circular dichroism, fluorescence, and proteolytic cleavage patterns showed that LPL started to refold from the C-terminal domain, independent of calcium. The first step was rapid and resulted in formation of an inactive monomer with a completely folded C-terminal domain, whereas the N-terminal domain was in the molten globule state. The second step was promoted by Ca2+ and converted LPL monomers from the molten globule state to dimerization-competent and more tightly folded monomers that rapidly formed active LPL dimers. The second step was slow, and it appears that proline isomerization (rather than dimerization as such) is rate-limiting. Inactive monomers isolated from human tissue recovered activity under the influence of Ca2+. We speculate that Ca2+-dependent control of LPL dimerization might be involved in the normal post-translational regulation of LPL activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins.

Lipoprotein lipase hydrolyzes the triglyceride-rich core of chylomicrons and very low density lipoproteins. It is also a ligand, in vitro, for binding of lipoproteins to the low density lipoprotein receptor-related protein and may play a central role in the receptor-mediated removal of triglyceride-rich lipoproteins. The aim of the present study was to determine to which lipoprotein subclass th...

متن کامل

Loss of intragenomic DNA repair heterogeneity with cellular differentiation.

The influence of terminal differentiation on UV-induced DNA damage and its repair in transcriptionally active and inactive genomic sequences was investigated using the murine 3T3-T proadipocyte cell culture system. Actively cycling 3T3-T cells terminally differentiate into adipocytes after exposure to media containing platelet-depleted human plasma. Suitable DNA fragments were analyzed from fou...

متن کامل

Assembly of lipoprotein lipase in perfused guinea-pig hearts.

It has been suggested that lipoprotein lipase (LPL) can be assembled into its catalytically active dimeric form only after its oligosaccharide chains have been processed in the Golgi. To study this in a complete organ, LPL was metabolically labelled with [35S]methionine in perfused guinea-pigs hearts. After 10 min pulse-labelling, LPL protein was eluted as two peaks from heparin-agarose: peak 1...

متن کامل

Calreticulin inhibits commitment to adipocyte differentiation

Calreticulin, an endoplasmic reticulum (ER) resident protein, affects many critical cellular functions, including protein folding and calcium homeostasis. Using embryonic stem cells and 3T3-L1 preadipocytes, we show that calreticulin modulates adipogenesis. We find that calreticulin-deficient cells show increased potency for adipogenesis when compared with wild-type or calreticulin-overexpressi...

متن کامل

Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator.

A lipase gene, lipK, and a lipase modulator gene, limK, of Pseudomonas sp. strain KFCC 10818 have been cloned, sequenced, and expressed in Escherichia coli. The limK gene is located immediately downstream of the lipK gene. Enzymatically active lipase was produced only in the presence of the limK gene. The effect of the lipase modulator LimK on the expression of active lipase was similar to thos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 52  شماره 

صفحات  -

تاریخ انتشار 2005