Competition between lidocaine and one of its metabolites, glycylxylidide, for cardiac sodium channels.

نویسندگان

  • P B Bennett
  • R L Woosley
  • L M Hondeghem
چکیده

The modulated receptor hypothesis states that sodium channels have a specific receptor for antiarrhythmic drugs. Therefore, two agents that block sodium channels by binding to this receptor are expected to compete for occupancy. Glycylxylidide (GX) is a deethylated metabolite of lidocaine that accumulates in patients on lidocaine therapy. In single, voltage-clamped cardiocytes, GX, like lidocaine, blocked cardiac sodium channels in a use-dependent manner. However, its kinetics of recovery from block were markedly different from lidocaine: at potentials between -80 and -100 mV, GX-blocked channels recovered faster and more completely than lidocaine-blocked channels but recovered more slowly at more negative potentials (-120 to -140 mV). If lidocaine and GX compete for a common receptor, then there are conditions in which addition of a "faster" drug to a "slower" drug will produce less block than the slower drug alone. At potentials between -120 and -140 mV, addition of GX (slower drug) to lidocaine always increased the level of block, but addition of lidocaine to GX decreased the block in four of nine experiments and did not increase it in three of nine experiments. Conversely, at potentials between -80 and -100 mV, addition of lidocaine (slower drug) to GX always increased block, whereas addition of GX to lidocaine reduced the level of block in five of 16 experiments and did not increase it in seven of 16 experiments. Thus, upon addition of more blocker, the sodium current increased in 36% of cases or did not decline in 76% of cases. These results can be explained by the modulated receptor hypothesis with two drugs competing for the same receptor.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycylxylidide, for Cardiac Sodium Channels

The modulated receptor hypothesis states that sodium channels have a specific receptor for antiarrhythmic drugs. Therefore, two agents that block sodium channels by binding to this receptor are expected to compete for occupancy. Glycylxylidide (GX) is a deethylated metabolite of lidocaine that accumulates in patients on lidocaine therapy. In single, voltage-clamped cardiocytes, GX, like lidocai...

متن کامل

Kinetics of interaction of the lidocaine metabolite glycylxylidide with the cardiac sodium channel. Additive blockade with lidocaine.

The recovery of the sodium channel from blockade by local anesthetic antiarrhythmic drugs is voltage dependent. Recovery from lidocaine-induced blockade is accelerated by hyperpolarization, whereas that from glycylxylidide (GX) blockade has been reported to be slowed by hyperpolarization. This striking difference occurs despite similarities in chemical structure. The fast recovery from GX block...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Temperature-dependent model of human cardiac sodium channel

Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...

متن کامل

Structural basis of differences in isoform-specific gating and lidocaine block between cardiac and skeletal muscle sodium channels.

Voltage-gated Na(+) channels underlie rapid conduction in heart and skeletal muscle. Cardiac sodium channels open and close over more negative potentials than do skeletal muscle sodium channels; heart channels are also more sensitive to lidocaine block. The structural basis of these differences is poorly understood. We mutated nine isoform-specific micro1 (rat skeletal muscle) channel residues ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 1988