Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes.
نویسندگان
چکیده
This study characterizes the sequential alterations of, and relations between, multiple electrolytes in cytoplasm, mitochondria, and whole cells during hypoxia and on reoxygenation in isolated neonatal rat ventricular myocytes. Subcellular electrolyte content and distribution were measured by electron probe x-ray microanalysis, membrane phospholipid degradation by tritiated arachidonic acid release, and cell morphology by electron microscopy. At 1-2 hours of hypoxia, the myocyte population showed a loss of cytoplasmic potassium, magnesium, and chlorine without alteration of cytoplasmic sodium or calcium. Mitochondria showed increased potassium with unchanged magnesium content. There was no morphological evidence of cell injury or tritiated arachidonic acid release. At 3-5 hours of hypoxia, the myocyte population showed a further loss of cytoplasmic potassium and magnesium and an increase in cytoplasmic sodium, chlorine, and calcium. At a single-cell level, the increase in cytoplasmic sodium preceded the increase in cytoplasmic calcium. Mitochondria showed increased sodium and chlorine and decreased magnesium before increased calcium content; potassium loss was manifest only at 5 hours of hypoxia. At 3-5 hours of hypoxia, there was also tritiated arachidonic acid release and morphological evidence of cell injury. Reoxygenation for 1 hour after 5 hours of hypoxia partially reversed the mean alterations of all electrolytes, except calcium, in the cytoplasm of the myocyte population, whereas analysis was required at a single-cell level to show a partial reversal in calcium levels in cytoplasm of reoxygenated cells. Reoxygenation for 1 hour after 5 hours of hypoxia partially reversed the mean alterations of all electrolytes, including calcium, in the mitochondria of the myocyte population. Recovery of potassium in the cytoplasm correlated with reduction of mitochondrial calcium content on reoxygenation and best predicted recovery of cellular homeostasis of sodium, chlorine, magnesium, and calcium. This study demonstrates that in this experimental model of hypoxia 1) initial losses of cytoplasmic potassium and magnesium occur in the absence of cell injury; 2) increases of sodium, chlorine, and calcium occur in association with cell injury, with sodium increasing before calcium; 3) membrane phospholipid degradation and electrolyte derangement, including increased calcium, may contribute to reversible and irreversible phases of cell injury; 4) analysis of calcium at a subcompartmental level and at a single-cell level is required to correlate reduction of calcium on reoxygenation with recovery of cell homeostasis; 5) reduction of calcium content in mitochondria may predict recovery of cell homeostasis; and 6) recovery of potassium on reoxygenation best predicts recovery of cell membrane function and cell homeostasis.
منابع مشابه
Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes.
Endoplasmic reticulum (ER) stresses that reduce ER protein folding activate the unfolded protein response (UPR). One effector of the UPR is the transcription factor X-box binding protein-1 (XBP1), which is expressed on ER stress-mediated splicing of the XBP1 mRNA. XBP1 induces certain ER-targeted proteins, eg, glucose-regulated protein 78 (GRP78), that help resolve the ER stress and foster cell...
متن کاملHypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes.
Cardiac myocytes coexpress multiple protein kinase C (PKC) isoforms which likely play distinct roles in signaling pathways leading to changes in contractility, hypertrophy, and ischemic preconditioning. Although PKC has been reported to be activated during myocardial ischemia, the effect of ischemia/hypoxia on individual PKC isoforms has not been determined. This study examines the effect of hy...
متن کاملA cellular mechanism for impaired posthypoxic relaxation in isolated cardiac myocytes. Altered myofilament relaxation kinetics at reoxygenation.
Single, isolated rat ventricular myocytes were made hypoxic for 10 minutes and then reoxygenated. During hypoxia, there was a marked abbreviation of the mechanical twitch, without a decrease in its amplitude. Immediately after reoxygenation, both the time to peak shortening and the duration of relaxation were markedly prolonged, and they remained prolonged for 10-50 minutes. The alterations in ...
متن کاملCellular Mechanism for Impaired Posthypoxic Relaxation in Isolated Cardiac Myocytes Altered Myofilament Relaxation Kinetics at Reoxygenation
Single, isolated rat ventricular myocytes were made hypoxic for 10 minutes and then reoxygenated. During hypoxia, there was a marked abbreviation of the mechanical twitch, without a decrease in its amplitude. Immediately after reoxygenation, both the time to peak shortening and the duration of relaxation were markedly prolonged, and they remained prolonged for 10-50 minutes. The alterations in ...
متن کاملProtective Effects of Dinitrosyl Iron Complexes under Oxidative Stress in the Heart
Background. Nitric oxide can successfully compete with oxygen for sites of electron-transport chain in conditions of myocardial hypoxia. These features may prevent excessive oxidative stress occurring in cardiomyocytes during sudden hypoxia-reoxygenation. Aim. To study the action of the potent stable NO donor dinitrosyl iron complex with glutathione (Oxacom®) on the recovery of myocardial contr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 71 1 شماره
صفحات -
تاریخ انتشار 1992