Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems
نویسندگان
چکیده
Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.
منابع مشابه
On the performance of different mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems
The performance of different mutation operators is usually evaluated in conjunction with specific parameter settings of genetic algorithms and target problems. Most studies focus on the classical genetic algorithm with different parameters or on solving unconstrained combinatorial optimization problems such as the traveling salesman problems. In this paper, a subpopulation-based genetic algorit...
متن کاملLAGA: A Software for Landscape Allocation using Genetic Algorithm
In this paper, Landscape Allocation using Genetic Algorithm (LAGA), a spatial multi-objective land use optimization software is introduced. The software helps in searching for optimal land use when multiple objectives such as suitability, area, cohesion and edge density indices are simultaneously involved. LAGA is a flexible and easy to use genetic algorithm-based software for optimizing the sp...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملDesigning a multi-objective nonlinear cross-docking location allocation model using genetic algorithm
In this study, a cross-docking system is designed at strategic and tactical levels. For making the strategic decisions, a multi-objective nonlinear location allocation model for cross-docks is presented based on a distri-bution location allocation model by Andreas Klose and Andreas Drexl. The model is further developed to in-clude the whole supply chain members and the objective functions are w...
متن کامل