Forecasting Dutch GDP and inflation using Alternative Factor Model Specifications based on Large and Small Datasets
نویسنده
چکیده
We compare the factor forecasting performance of nested specifications of the generalized factor model based on various configurations of a large macroeconomic data set. The forecast simulation design involves in-sample model selection, factor estimation, parameter estimation and, finally, generating factor forecasts and factor augmented autoregressive forecasts. In order to empirically determine the importance of the size and the structure of the data set, we run the forecast simulation design for different configurations of the data set. We compare the factor model diagnostics of each specification and data configuration with the corresponding forecast performance. The results favour the factor structure as the specification that imposes the factor structure to the least extent and, hence, is allowed most flexibility to adapt to the data, is significantly being outperformed. Moreover, the results show that size matters as though smaller macroeconomic data sets exhibit stronger coherence, the factors being well fit do, however, generally not show improved forecasting performance. keywords: Factor Models, Macroeconomic Forecasting, Leading Indicators JEL-code: C43, C51, E32 Sveriges Riksbank, Monetary Policy Department, SE-103 37 Stockholm, Sweden, E-mail: [email protected]
منابع مشابه
Inflation Dynamics in a Dutch Disease Economy
Abstract In this paper, the effect of foreign sector macro-variable on inflation dynamics and firms’ pricing behavior has been investigated in the context of a small open economy New Keynesian Phillips Curve. This curve is derived and estimated for a developing oil-exporting economy suffering from Dutch Disease. This version of NKPC is an extension of Leith and Malley’s (2007) small open econom...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملReal-Time Inflation Forecasting in a Changing World
Abstract This paper revisits real-time forecasting of U.S. inflation based on Phillips curve-inspired linear regression models. Our innovation is to allow for both structural breaks in the regression parameters and the variance as well as uncertainty regarding which set of predictor variables one can include in these regressions (‘model uncertainty’). Structural breaks are described by occasion...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کامل