Mining High Utility Itemsets in Big Data
نویسندگان
چکیده
In recent years, extensive studies have been conducted on high utility itemsets (HUI) mining with wide applications. However, most of them assume that data are stored in centralized databases with a single machine performing the mining tasks. Consequently, existing algorithms cannot be applied to the big data environments, where data are often distributed and too large to be dealt with by a single machine. To address this issue, we propose a new framework for mining high utility itemsets in big data. A novel algorithm named PHUI-Growth (Parallel mining High Utility Itemsets by pattern-Growth) is proposed for parallel mining HUIs on Hadoop platform, which inherits several nice properties of Hadoop, including easy deployment, fault recovery, low communication overheads and high scalability. Moreover, it adopts the MapReduce architecture to partition the whole mining tasks into smaller independent subtasks and uses Hadoop distributed file system to manage distributed data so that it allows to parallel discover HUIs from distributed data across multiple commodity computers in a reliable, fault tolerance manner. Experimental results on both synthetic and real datasets show that PHUI-Growth has high performance on large-scale datasets and outperforms state-of-the-art non-parallel type of HUI mining algorithms.
منابع مشابه
A New Algorithm for High Average-utility Itemset Mining
High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملEfficient Mining of Uncertain Data for High-Utility Itemsets
High-utility itemset mining (HUIM) is emerging as an important research topic in data mining. Most algorithms for HUIM can only handle precise data, however, uncertainty that are embedded in big data which collected from experimental measurements or noisy sensors in real-life applications. In this paper, an efficient algorithm, namely Mining Uncertain data for High-Utility Itemsets (MUHUI), is ...
متن کاملMining high on-shelf utility itemsets with negative values from dynamic updated database
Utility mining emerged to overcome the limitations of frequent itemset mining by considering the utility of an item. Utility of an item is based on user’s interest or preference. Recently, temporal data mining has become a core technical data processing technique to deal with changing data. On-shelf utility mining considers on-shelf time period of item and gets the accurate utility values of it...
متن کاملInternational Journal of advanced studies in Computer Science and Engineering
Utility mining emerged to overcome the limitations of frequent itemset mining by considering the utility of an item. Utility of an item is based on user’s interest or preference. Recently, temporal data mining has become a core technical data processing technique to deal with changing data. On-shelf utility mining considers on-shelf time period of item and gets the accurate utility values of it...
متن کامل