Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane
نویسندگان
چکیده
Nerve repair in tissue engineering involves the precise construction of a scaffold to guide nerve cell regeneration in the desired direction. However, improvements are needed to facilitate the cell migration/growth rate of nerves in the center of a nerve conduit. In this paper, we propose a nerve guidance conduit with a hybrid structure comprising a microfibrous poly(lactic-co-glycolic acid) (PLGA) bundle wrapped in a micro/nanostructured PLGA membrane. We applied sequential fabrication processes, including photolithography, nano-electroforming, and polydimethylsiloxane casting to manufacture master molds for the repeated production of the PLGA subelements. After demolding it from the master molds, we rolled the microfibrous membrane into a bundle and then wrapped it in the micro/nanostructured membrane to form a nerve-guiding conduit. We used KT98/F1B-GFP cells to estimate the migration rate and guidance ability of the fabricated nerve conduit and found that both elements increased the migration rate 1.6-fold compared with a flat PLGA membrane. We also found that 90% of the cells in the hybrid nano/microstructured membrane grew in the direction of the designed patterns. After 3 days of culturing, the interior of the nerve conduit was filled with cells, and the microfiber bundle was also surrounded by cells. Our conduit cell culture results also demonstrate that the proposed micro/nanohybrid and microfibrous structures can retain their shapes. The proposed hybrid-structured conduit demonstrates a high capability for guiding nerve cells and promoting cell migration, and, as such, is feasible for use in clinical applications.
منابع مشابه
Comparison Outcome of Nerve Regeneration across an Eggshell Membrane Guidance Channel and Autograft
Background: Peripheral nerves may be damaged during an injury and its current standard treatment is using an autologous nerve. Objectives: The purpose of this experimental study is to evaluate and compare the histological results of nerve regeneration after using the eggshell membrane (ESM) guidance channel with autograft. Materials and Methods: Thirty adult male rats were divided into th...
متن کاملUltrastructural Changes in Spinal Motoneurons and Locomotor Functional Study after Sciatic Nerve Repair in Conduit Tube
Objective(s) Motor deficit and neuron degeneration is seen after nerve transection. The aim of this study is to determine whether a poled polyvinelidene fluoride (PVDF) tube with other supportive strategies can protect the neuronal morphology and motor function after sciatic nerve transaction in rats. Materials and Methods After transection of the left sciatic nerve in 60 male Wistar rats (2...
متن کاملThree-layer microfibrous peripheral nerve guide conduit composed of elastin-laminin mimetic artificial protein and poly(L-lactic acid)
We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfib...
متن کاملEffect of Local Administration of Laminin and Fibronectin with Chitosan Conduit on Peripheral Nerve Regeneration: A Rat Sciatic Nerve Transection Model
Objective-Effect of local administration of laminin and fibronectin on nerve regeneration was assessed. Design- Experimental study. Animal- Sixty male Wistar rats. Procedures- The animals were divided into four experimental groups (n=15), randomly: In transected group left sciatic nerve was transected and stumps were fixed in adjacent muscle. In treatment group (CHIT/LF) the defect was bridg...
متن کاملCollagen-coated polylactic-glycolic acid (PLGA) seeded with neural-differentiated human mesenchymal stem cells as a potential nerve conduit.
BACKGROUND Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative. OBJECTIVES To develop an artificial nerve conduit using collagen-coated polylactic-glycolic acid (PLGA) and to analyse the survivability and propagating ability of the neuro-differentiate...
متن کامل