TRPC3 mediates hyperexcitability and epileptiform activity in immature cortex and experimental cortical dysplasia.

نویسندگان

  • Fu-Wen Zhou
  • Steven N Roper
چکیده

Neuronal hyperexcitability plays an important role in epileptogenesis. Conditions of low extracellular calcium (Ca) or magnesium (Mg) can induce hyperexcitability and epileptiform activity with unclear mechanisms. Transient receptor potential canonical type 3 (TRPC3) channels play a pivotal role in neuronal excitability and are activated in low-Ca and/or low-Mg conditions to depolarize neurons. TRPC3 staining was highly enriched in immature, but very weak in mature, control cortex, whereas it was strong in dysplastic cortex at all ages. Depolarization and susceptibility to epileptiform activity increased with decreasing Ca and Mg. Combinations of low Ca and low Mg induced larger depolarization in pyramidal neurons and greater susceptibility to epileptiform activity in immature and dysplastic cortex than in mature and control cortex, respectively. Intracellular application of anti-TRPC3 antibody to block TRPC3 channels and bath application of the selective TRPC3 inhibitor Pyr3 greatly diminished depolarization in immature control and both immature and mature dysplastic cortex with strong TRPC3 expression. Epileptiform activity was initiated in low Ca and low Mg when synaptic activity was blocked, and Pyr3 completely suppressed this activity. In conclusion, TRPC3 primarily mediates low Ca- and low Mg-induced depolarization and epileptiform activity, and the enhanced expression of TRPC3 could make dysplastic and immature cortex more hyperexcitable and more susceptible to epileptiform activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPC 3 Mediates Hyperexcitability and Epileptiform Activity in Immature Cortex and 1 Experimental Cortical Dysplasia

TRPC3 Mediates Hyperexcitability and Epileptiform Activity in Immature Cortex and 1 Experimental Cortical Dysplasia 2 3 Fu-Wen Zhou*, and Steven N. Roper 4 Departments of Neurosurgery and the McKnight Brain Institute, 5 University of Florida 6 7 Running Head: TRPC3 in cortical dysplasia 8 9 10 *Corresponding Author: 11 Fu-Wen Zhou, M.D., Ph.D. 12 Department of Neurosurgery 13 University of Flor...

متن کامل

Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings.

The majority of patients showing neuronal migration disorders in cortical structures suffer from pharmaco-resistant epilepsy. In order to study the molecular and cellular mechanisms underlying this pronounced hyperexcitability, we used an animal model of focal cortical dysplasia demonstrating structural malformations which resemble the human pathology of microgyria. Neocortical slices prepared ...

متن کامل

Alterations in NMDA receptors in a rat model of cortical dysplasia.

Recent studies have demonstrated an important role for the N-methyl-D-aspartate receptor (NMDAR) in epilepsy. NMDARs have also been shown to play a critical role in hyperexcitability associated with several animal models of human epilepsy. Using whole-cell voltage clamp recordings in brain slices, we studied evoked paroxysmal discharges in the freeze-lesion model of neocortical microgyria. The ...

متن کامل

Abnormal network activity in a targeted genetic model of human double cortex.

In human patients, cortical dysplasia produced by Doublecortin (DCX) mutations lead to mental retardation and intractable infantile epilepsies, but the underlying mechanisms are not known. DCX(-/-) mice have been generated to investigate this issue. However, they display no neocortical abnormality, lessening their impact on the field. In contrast, in utero knockdown of DCX RNA produces a morpho...

متن کامل

Focal epileptogenesis in a rat model of polymicrogyria.

Polymicrogyria, a developmental cortical malformation associated with epilepsy, can be modeled in rats with a transcortical freeze lesion on the day of birth (P0) or P1. We have used field potential recordings to characterize the incidence, propagation patterns, and distribution of epileptiform activity in slices from rats with experimental microgyri. Interictal-like epileptiform activity was e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 111 6  شماره 

صفحات  -

تاریخ انتشار 2014