On the Role of Cannabinoid CB1- and μ-Opioid Receptors in Motor Impulsivity

نویسندگان

  • Joost Wiskerke
  • Yvar van Mourik
  • Dustin Schetters
  • Anton N. M. Schoffelmeer
  • Tommy Pattij
چکیده

Previous studies using a rat 5-choice serial reaction time task have established a critical role for dopamine D2 receptors in regulating increments in motor impulsivity induced by acute administration of the psychostimulant drugs amphetamine and nicotine. Here we investigated whether cannabinoid CB1 and/or μ-opioid receptors are involved in nicotine-induced impulsivity, given recent findings indicating that both receptor systems mediate amphetamine-induced motor impulsivity. Results showed that the cannabinoid CB1 receptor antagonist SR141716A, but not the opioid receptor antagonist naloxone, reduced nicotine-induced premature responding, indicating that nicotine-induced motor impulsivity is cannabinoid, but not opioid receptor-dependent. In contrast, SR141716A did not affect impulsivity following a challenge with the dopamine transporter inhibitor GBR 12909, a form of drug-induced impulsivity that was previously found to be dependent on μ-opioid receptor activation. Together, these data are consistent with the idea that the endogenous cannabinoid, dopamine, and opioid systems each play important, but distinct roles in regulating (drug-induced) motor impulsivity. The rather complex interplay between these neurotransmitter systems modulating impulsivity will be discussed in terms of the differential involvement of mesocortical and mesolimbic neurocircuitry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannabinoid CB1 Receptors Mediate the Gastroprotective Effect of Neurotensin

Objective(s) Several lines of evidence indicate that neuropeptides exhibit protective properties against gastroduodenal ulcers. Neurotensin, a gut-brain neuropeptide, is implicated in a number of physiological processes in the central nervous system and peripheral tissues including gastrointestinal tract. In the present study, we aimed to investigate the gastroprotective potential of either p...

متن کامل

Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate.

Joint pain is a common clinical problem for which both inflammatory and degenerative joint diseases are major causes. The purpose of this study was to investigate the role of CB1 and CB2 cannabinoid receptors in the behavioral, histological, and neurochemical alterations associated with joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice f...

متن کامل

Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

BACKGROUND AND PURPOSE Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2 ). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects ...

متن کامل

Isolation and Biological Evaluation of Prenylated Flavonoids from Maclura pomifera

Phytochemical analysis of the ethanolic extract of Maclura pomifera fruits yielded four new compounds (I-IV) along with eleven known compounds (V-XV). The crude extract exhibited significant activity towards cannabinoid receptors (CB1: 103.4% displacement; CB2: 68.8% displacement) and possibly allosteric interaction with δ and μ opioid receptors (-49.7 and -53.8% displacement, resp.). Compound ...

متن کامل

CB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin

Objective(s): Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s) by which antipsychotics affect brain neurotensin neurotransmission have no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012