Invariant Euler-Lagrange Equations and the Invariant Variational Bicomplex

نویسندگان

  • Irina A. Kogan
  • Peter J. Olver
چکیده

In this paper, we derive an explicit group-invariant formula for the EulerLagrange equations associated with an invariant variational problem. The method relies on a group-invariant version of the variational bicomplex induced by a general equivariant moving frame construction, and is of independent interest. Mathematics Subject Classification (2000): Primary: 53A55, 58J70, 58E40 Secondary: 35A30, 49S05, 58A20 † Supported in part by NSF Grant DMS 99–83403. ‡ Supported in part by NSF Grant DMS 01–03944. August 20, 2003

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Invariant Variational Bicomplex

We establish a group-invariant version of the variational bicomplex that is based on a general moving frame construction. The main application is an explicit group-invariant formula for the Euler-Lagrange equations of an invariant variational problem.

متن کامل

Invariant Variational Problems and Invariant Flows via Moving Frames

This paper reviews the moving frame approach to the construction of the invariant variational bicomplex. Applications include explicit formulae for the Euler-Lagrange equations of an invariant variational problem, and for the equations governing the evolution of differential invariants under invariant submanifold flows.

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Orbit Reduction of Exterior Differential Systems, and group-invariant Variational Problems

For a given PDE system (or an exterior differential system) possessing a Lie group of internal symmetries the orbit reduction procedure is introduced. It is proved that the solutions of the reduced exterior differential system are in one-to-one correspondence with the moduli space of regular solutions of the prolongation of the original system. The isomorphism between the local characteristic c...

متن کامل

. SG ] 1 5 Ju n 19 99 Discrete Lagrangian reduction , discrete Euler – Poincaré equations , and semidirect products

A discrete version of Lagrangian reduction is developed in the context of discrete time Lagrangian systems on G×G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. In this context the reduction of the discrete Euler–Lagrange equations is shown to lead to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000