Frankl-Füredi Type Inequalities for Polynomial Semi-lattices

نویسندگان

  • Jin Qian
  • Dwijendra K. Ray-Chaudhuri
چکیده

Let X be an n-set and L a set of nonnegative integers. F , a set of subsets of X, is said to be an L -intersection family if and only if for all E 6= F ∈ F , |E ∩F | ∈ L. A special case of a conjecture of Frankl and Füredi [4] states that if L = {1, 2, . . . , k}, k a positive integer, then |F| ≤ ∑ki=0 (n−1 i ). Here |F| denotes the number of elements in F . Recently Ramanan proved this conjecture in [6] We extend his method to polynomial semi-lattices and we also study some special L-intersection families on polynomial semi-lattices. Finally we prove two modular versions of Ray-Chaudhuri-Wilson inequality for polynomial semi-lattices. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Cancellative and Recovering Sets on Lattices

We use information theory to study recovering sets RL and strongly cancellative sets CL on different lattices. These sets are special classes of recovering pairs and cancellative sets previously discussed in the papers of Simonyi, Frankl, and Füredi. We mainly focus on the lattices Bn and D k l . Specifically, we find upper bounds and constructions for the sets RBn , CBn , and CDk l .

متن کامل

On a Conjecture of Frankl and Füredi

Frankl and Füredi conjectured that if F ⊂ 2 is a non-trivial λ-intersecting family of size m, then the number of pairs {x, y} ∈ ( X 2 ) that are contained in some F ∈ F is at least ( m 2 ) [P. Frankl and Z. Füredi. A Sharpening of Fisher’s Inequality. Discrete Math., 90(1):103-107, 1991]. We verify this conjecture in some special cases, focusing especially on the case where F is additionally re...

متن کامل

On Bernstein Type Inequalities for Complex Polynomial

In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.

متن کامل

A sharpening of Fisher's inequality

Frankl, P. and Z. Filredi, A sharpening of Fisher’s inequality, Discrete Mathematics 90 (1991) 103-107. It is proved that in every linear space on v points and b lines the number of intersecting line-pairs is at least (z). This clearly implies b 2 v.

متن کامل

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1997