The Mathematics of the Pentium Division Bug
نویسنده
چکیده
Despite all of the publicity surrounding the Pentium bug of 1994, the mathematical details of the bug are poorly understood. We discuss these details and supply a new proof of the Coe–Tang result that the at-risk divisors have six consecutive ones in positions 5 through 10. Also, we prove that the worst-case absolute error for arguments in [1, 2) is on the order of 1e–5.
منابع مشابه
Anatomy of the Pentium Bug
The Pentium computer chip’s division algorithm relies on a table from which five entries were inadvertently omitted, with the result that 1738 single precision dividenddivisor pairs yield relative errors whose most significant bit is uniformly distributed from the 14th to the 23rd (least significant) bit. This corresponds to a rate of one error every 40 billion random single precision divisions...
متن کاملRound-o induced instabilities and some unusual arithmetics
We consider some unusual phenomena that appear in long consecutive calculations due to a new sort of round-oo errors of Pentium oating point division bug type. Mathematical model of these round-oo errors is proposed and new phenomena in numerical simulations of dynamical systems (diierential equations) and other numerical procedures are discussed. It is shown also that these new phenomena could...
متن کاملReflections on the Pentium Division Bug
We review the eld of result-checking and suggest that it be extended to a methodology for enforcing hardware/software reliability. We thereby formulate a vision for \self-monitoring" hardware/software whose reliability is augmented through embedded suites of run-time correctness checkers. In particular, we suggest that embedded checkers and correctors may be employed to safeguard against arithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 39 شماره
صفحات -
تاریخ انتشار 1997