The maximum genus of vertex-transitive graphs

نویسندگان

  • Martin Skoviera
  • Roman Nedela
چکیده

Graphs possessing a high degree of symmetry have often been considered in topological graph theory. For instance, a number of constructions of genus embeddings by means of current or voltage graphs is based on the observation that a graph can be represented as a Cayley graph for some group. Another kind of embedding problems where symmetrical graphs are encountered is connected with regular maps or symmetrical embeddings, generally in the interior of the embedding range. In this paper we focus on the other extreme of the embedding range by investigating the maximum genus of vertex-transitive graphs. A similar problem has been studied by Khomenko and Glukhov [4, Theorem lo] who showed that every edge-transitive graph is upper-embeddable. In the present paper we shall see that, by contrast, vertex-transitive graphs may not be upper-embeddable in general. However, we shall succeed in characterizing all those vertex-transitive graphs that are not upper-embeddable and in determining their maximum genus. We show that a simple connected vertex-transitive graph of valency k and girth g is upper-embeddable whenever k 2 4 or g 2 4. The remaining vertex-transitive graphs, apart from cycles and three small-order exceptions, are not upperembeddable. These coincide, however, with truncated cubic graphs (see Section 1 for the definition) whose maximum genus was computed in [l] and [9]. A particular attention is paid to Cayley graphs. It is interesting that a cubic Cayley graph K is not upper-embeddable if and only if K is the truncation of the graph underlying a 3-valent regular map on an orientable surface, with some exceptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number

In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.

متن کامل

A Note on Coloring Vertex-transitive Graphs

We prove bounds on the chromatic number χ of a vertex-transitive graph in terms of its clique number ω and maximum degree ∆. We conjecture that every vertex-transitive graph satisfies χ 6 max{ω, ⌈ 5∆+3 6 ⌉ }, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with ∆ > 13 we prove the Borodin–Kostochka conjecture, i.e., χ 6 max{ω,∆− 1}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 78  شماره 

صفحات  -

تاریخ انتشار 1989