Delft University of Technology Bounding the probability of resource constraint violations in multi-agent MDPs

نویسندگان

  • Frits de Nijs
  • Erwin Walraven
  • Mathijs M. de Weerdt
  • Matthijs T. J. Spaan
چکیده

Multi-agent planning problems with constraints on global resource consumption occur in several domains. Existing algorithms for solving Multi-agent Markov Decision Processes can compute policies that meet a resource constraint in expectation, but these policies provide no guarantees on the probability that a resource constraint violation will occur. We derive a method to bound constraint violation probabilities using Hoeffding’s inequality. This method is applied to two existing approaches for computing policies satisfying constraints: the Constrained MDP framework and a Column Generation approach. We also introduce an algorithm to adaptively relax the bound up to a given maximum violation tolerance. Experiments on a hard toy problem show that the resulting policies outperform static optimal resource allocations to an arbitrary level. By testing the algorithms on more realistic planning domains from the literature, we demonstrate that the adaptive bound is able to efficiently trade off violation probability with expected value, outperforming state-of-the-art planners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding the Probability of Resource Constraint Violations in Multi-Agent MDPs

Multi-agent planning problems with constraints on global resource consumption occur in several domains. Existing algorithms for solving Multi-agent Markov Decision Processes can compute policies that meet a resource constraint in expectation, but these policies provide no guarantees on the probability that a resource constraint violation will occur. We derive a method to bound constraint violat...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Optimization of an energy based bi-objective multi skilled resource investment project scheduling problem

Growing concern in the management of energy due to the increasing energy costs, has forced managers to optimize the amount of energy required to provide products and services. This research integrates an energy-based resource investment project-scheduling problem (RIP) under a multi-skilled structure of the resources. The proposed energy based multi skilled resource investment problem (EB-MSRIP...

متن کامل

A Bi-objective Pre-emption Multi-mode Resource Constrained Project Scheduling Problem with due Dates in the Activities

In this paper, a novel mathematical model for a preemption multi-mode multi-objective resource-constrained project scheduling problem with distinct due dates and positive and negative cash flows is presented. Although optimization of bi-objective problems with due dates is an essential feature of real projects, little effort has been made in studying the P-MMRCPSP while due dates are included i...

متن کامل

A New Bi-Objective Model for a Multi-Mode Resource-Constrained Project Scheduling Problem with Discounted Cash Flows and four Payment Models

The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity to an execution mode of activities by considering relationship constraints, to achieve pre-determined objective(s). These goals vary with managers or decision makers of any organization who should determine suitable objective(s) considering organization strategi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017