Reactive symbol sequences for a model of hydrogen combustion.
نویسندگان
چکیده
Transient, macroscopic states of chemical disequilibrium are born out of the microscopic dynamics of molecules. As a reaction mixture evolves, the temporal patterns of chemical species encodes some of this dynamical information, while their statistics are a manifestation of the bulk kinetics. Here, we define a chemically-informed symbolic dynamics as a coarse-grained representation of classical molecular dynamics, and analyze the sequences of chemical species for a model of hydrogen combustion. We use reactive molecular dynamics simulations to generate the sequences and derive probability distributions for sequence observables: the reaction time scales and the chain length - the total number of reactions between initiation of a reactant and termination at products. The time scales and likelihood of the sequences depend strongly on the chain length, temperature, and density. Temperature suppresses the uncertainty in chain length for hydrogen sequences, but enhances the uncertainty in oxygen sequence chain lengths. This method of analyzing a surrogate chemical symbolic dynamics reduces the complexity of the chemistry from the atomistic to the molecular level and has the potential for extension to more complicated reaction systems.
منابع مشابه
Effect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملCFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber
This paper reports a CFD modeling study to investigate the hydrogen-air mixture combustion in a micro scale chamber. Nine species with nineteen reversible reactions were considered in the premixed combustion model. The effect of operational and geometrical conditions including; combustor size, wall conductivity, reactant flow rates and hydrogen feed splitting on combustion stabilit...
متن کاملEffect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملAdaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations i...
متن کاملInfluence of Thermal Radiation Models on Prediction of Reactive Swirling Methane/Air Flame in a Model Gas Turbine Combustor
A numerical simulation of reactive swirling methane/air non-premixed flame in a new three-dimensional model combustion chamber is carried out to assess the performance of two thermal radiation models, namely, the Discrete Transfer Radiation Model and the P-1 Model. A Finite Volume staggered grid approach is employed to solve the governing equations.The second-order upwind scheme is applied for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 4 شماره
صفحات -
تاریخ انتشار 2016