Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy.
نویسندگان
چکیده
PURPOSE Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown. We investigated the involvement of fibroblast growth factor (FGF) signals in synovial sarcoma and evaluated the therapeutic effect of inhibiting the FGF signal. EXPERIMENTAL DESIGN The expression of 22 FGF and 4 FGF receptor (FGFR) genes in 18 primary tumors and five cell lines of synovial sarcoma were analyzed by reverse transcription-PCR. Effects of recombinant FGF2, FGF8, and FGF18 for the activation of mitogen-activated protein kinase (MAPK) and the growth of synovial sarcoma cell lines were analyzed. Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. RESULTS Synovial sarcoma cell lines expressed multiple FGF genes especially those expressed in neural tissues, among which FGF8 showed growth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and p38MAPK but not c-Jun NH2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR caused cell cycle arrest leading to significant growth inhibition both in vitro and in vivo. Growth inhibition by the FGFR inhibitor was associated with a down-regulation of phosphorylated ERK1/2 but not p38MAPK, and an ERK kinase inhibitor also showed growth inhibitory effects for synovial sarcoma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2. CONCLUSIONS FGF signals have an important role in the growth of synovial sarcoma, and inhibitory molecules will be of potential use for molecular target therapy in synovial sarcoma.
منابع مشابه
The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کاملDesigning and Construction of Recombinant Plasmid Consisting of Basic Fibroblast Growth Factor and Immunodominant Fragments of Pseudomonas Exotoxin
Abstract Background and Objective: the inhibition of tumor-associated angiogenesis can significantly reduce the tumor proliferation. The basic fibroblast growth factor (bFGF), an important angiogenic factor, is considered as a potential therapeutic target for cancer therapy. The purpose of this study was evaluating, designing and construction of new recombinant DNA molecule in order to ha...
متن کاملCharacterization of FGFR signaling pathway as therapeutic targets for sarcoma patients
The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studie...
متن کاملJAK-STAT pathway and JAK inhibitors: a primer for dermatologists
Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...
متن کاملDipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway.
Dipeptidyl peptidase IV (DPPIV) is a serine protease with tumor suppressor function. It regulates the activities of mitogenic peptides implied in cancer development. Progression of benign prostate cancer to malignant metastasis is linked to increased production of basic fibroblast growth factor (bFGF), a powerful mitogen. In this study, using in vitro model system we show that DPPIV loss is ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 11 7 شماره
صفحات -
تاریخ انتشار 2005