Bases of Admissible Rules of Lukasiewicz Logic

نویسنده

  • Emil Jerábek
چکیده

We construct explicit bases of single-conclusion and multiple-conclusion admissible rules of propositional Lukasiewicz logic, and we prove that every formula has an admissibly saturated approximation. We also show that Lukasiewicz logic has no finite basis of admissible rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Admissible Rules of Lukasiewicz Logic

We investigate admissible rules of Lukasiewicz multi-valued propositional logic. We show that admissibility of multiple-conclusion rules in Lukasiewicz logic, as well as validity of universal sentences in free MV -algebras, is decidable (in PSPACE ).

متن کامل

The complexity of admissible rules of Lukasiewicz logic

We investigate the computational complexity of admissibility of inference rules in infinite-valued Lukasiewicz propositional logic ( L). It was shown in [13] that admissibility in L is checkable in PSPACE. We establish that this result is optimal, i.e., admissible rules of L are PSPACE-complete. In contrast, derivable rules of L are known to be coNP-complete.

متن کامل

Independent Bases of Admissible Rules

We show that IPC , K4, GL, and S4, as well as all logics inheriting their admissible rules, have independent bases of admissible rules.

متن کامل

Preservation of Admissible Rules when Combining Logics

Admissible rules are shown to be conservatively preserved by the meetcombination of a wide class of logics. A basis is obtained for the resulting logic from bases given for the component logics. Structural completeness and decidability of the set of admissible rules are also shown to be preserved, the latter with no penalty on the time complexity. Examples are provided for the meet-combination ...

متن کامل

An Avron rule for fragments of R-mingle

Axiomatic bases of admissible rules are obtained for fragments of the substructural logic R-mingle. In particular, it is shown that a “modus-ponens-like” rule introduced by Arnon Avron forms a basis for the admissible rules of its implication and implication-fusion fragments, while a basis for the admissible rules of the full multiplicative fragment requires an additional countably infinite set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010