superstability of $m$-additive maps on complete non--archimedean spaces

نویسندگان

ismail nikoufar

چکیده

the stability problem of the functional equation was conjectured by ulam and was solved by hyers in the case of additive mapping. baker et al. investigated the superstability of the functional equation from a vector space to real numbers.in this paper, we exhibit the superstability of $m$-additive maps on complete non--archimedean spaces via a fixed point method raised by diaz and margolis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

Stability of additive mappings in non-Archimedean fuzzy normed spaces

In this paper we introduce a notion of a non-Archimedean fuzzy norm and study the stability of the Cauchy equation in the context of non-Archimedean fuzzy spaces in the spirit of Hyers–Ulam–Rassias–Găvruţa. As a corollary, the stability of the Jensen equation is established. We indeed present an interdisciplinary relation between the theory of fuzzy spaces, the theory of non-Archimedean spaces ...

متن کامل

Additive Ρ –functional Inequalities in Non–archimedean Normed Spaces

In this paper, we solve the additive ρ -functional inequalities ‖ f (x+ y)− f (x)− f (y)‖ ∥∥∥ρ ( 2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ (0.1) and ∥∥∥2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2) where ρ is a fixed non-Archimedean number with |ρ| < 1 . Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in non-Archimedean...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

Stability and Superstability of Ring Homomorphisms on Non-Archimedean Banach Algebras

and Applied Analysis 3 Moreover, D. G. Bourgin 16 and Găvruţa 17 have considered the stability problem with unbounded Cauchy differences see also 18–23 . On the other hand, J. M. Rassias 24–29 considered the Cauchy difference controlled by a product of different powers of norm. However, there was a singular case; for this singularity a counterexample was given by Găvruţa 30 . Theorem 1.2 J. M. ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
sahand communications in mathematical analysis

ناشر: university of maragheh

ISSN 2322-5807

دوره 2

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023