estimating a bounded normal mean under the linex loss function

نویسندگان

a. karimnezhad

چکیده

let x be a random variable from a normal distribution with unknown mean θ and known variance σ2. in many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. as the usual estimator of θ, i.e., x under the linex loss function is inadmissible, finding some competitors for x becomes worthwhile. the only study in the literature considered the problem of minimax estimation of θ in this paper, by constructing a dominating class of estimators, we show that the maximum likelihood estimator is inadmissible. then, as a competitor, the bayes estimator associated with a uniform prior on the interval [−m,m] is proposed. finally, considering risk performance as a comparison criterion, the estimators are compared and depending on the values taken by θ in the interval [−m,m], the appropriate estimator is suggested.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating a Bounded Normal Mean Under the LINEX Loss Function

Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...

متن کامل

Estimating a Bounded Normal Mean Under the LINEX Loss Function

Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...

متن کامل

Estimating a Bounded Normal Mean Relative to Squared Error Loss Function

Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...

متن کامل

estimating a bounded normal mean relative to squared error loss function

let be a random sample from a normal distribution with unknown mean and known variance the usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. in many practical situations, is known in advance to lie in an interval, say for some in this case, the maximum likelihood estimator changes and d...

متن کامل

Estimation of Scale Parameter Under a Bounded Loss Function

     The quadratic loss function has been used by decision-theoretic statisticians and economists for many years.  In this paper  the estimation of scale parameter under a bounded loss function, which is adequate for assessing quality and quality improvement, is considered with restriction to the principles of invariance and risk unbiasedness. An implicit form of minimum risk scale equivariant ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of sciences, islamic republic of iran

ناشر: university of tehran

ISSN 1016-1104

دوره 24

شماره 2 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023