isotropic lagrangian submanifolds in complex space forms
نویسندگان
چکیده
in this paper we study isotropic lagrangian submanifolds , in complex space forms . it is shown that they are either totally geodesic or minimal in the complex projective space , if . when , they are either totally geodesic or minimal in . we also give a classification of semi-parallel lagrangian h-umbilical submanifolds.
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملHamiltonian-minimal Lagrangian submanifolds in complex space forms
Using Legendrian immersions and, in particular, Legendre curves in odd dimensional spheres and anti De Sitter spaces, we provide a method of construction of new examples of Hamiltonian-minimal Lagrangian submanifolds in complex projective and hyperbolic spaces, including explicit one parameter families of embeddings of quotients of certain product manifolds. In addition, new examples of minimal...
متن کاملWillmore Lagrangian Submanifolds in Complex Projective Space
Let M be an n -dimensional compact Willmore Lagrangian submanifold in a complex projective space CPn and let S and H be the squared norm of the second fundamental form and the mean curvature of M . Denote by ρ2 = S−nH2 the non-negative function on M , K and Q the functions which assign to each point of M the infimum of the sectional curvature and Ricci curvature at the point. We prove some inte...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of sciences, islamic republic of iranناشر: university of tehran
ISSN 1016-1104
دوره 23
شماره 3 2012
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023