frames and homogeneous spaces

نویسندگان

a. ghaani farashahi

چکیده

let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . in this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . as an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via the linear operator .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Weighted Coorbit Spaces and Banach Frames on Homogeneous Spaces

This article is concerned with frame constructions on domains and manifolds. The starting point is a unitary group representation which is square integrable modulo a suitable subgroup and therefore gives rise to a generalized continuous wavelet transform. Then generalized coorbit spaces can be defined by collecting all functions for which this wavelet transform is contained in a weighted Lp-spa...

متن کامل

Coorbit Spaces and Banach Frames on Homogeneous Spaces with Applications to the Sphere

This paper is concerned with the construction of generalized Banach frames on homogeneous spaces. The major tool is a unitary group representation which is square integrable modulo a certain subgroup. By means of this representation, generalized coorbit spaces can be defined. Moreover, we can construct a specific reproducing kernel which, after a judicious discretization, gives rise to atomic d...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of sciences, islamic republic of iran

ناشر: university of tehran

ISSN 1016-1104

دوره 22

شماره 4 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023