triple positive solutions for boundary value problem of a nonlinear fractional differential equation

نویسندگان

r. dehghani

k. ghanbari

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

this paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. we show that it has at least one or two positive solutions. the main tool is krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

this article is devoted to the study of existence and multiplicity of positive solutions to aclass of nonlinear fractional order multi-point boundary value problems of the type−dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where dq0+ represents standard riemann-liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ∞...

متن کامل

Triple positive solutions for a boundary value problem of nonlinear fractional differential equation

In this paper, we investigate the existence of three positive solutions for the nonlinear fractional boundary value problem Dα0+u(t) + a(t) f (t, u(t), u (t)) = 0, 0 < t < 1, 3 < α ≤ 4, u(0) = u(0) = u(0) = u(1) = 0, where Dα0+ is the standard Riemann-Liouville fractional derivative. The method involves applications of a new fixed-point theorem due to Bai and Ge. The interesting point lies in t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 33

شماره No. 2 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023