relative n-th non-commuting graphs of finite groups

نویسندگان

a. erfanian

b. tolue

چکیده

‎suppose $n$ is a fixed positive integer‎. ‎we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$‎, ‎associated to the non-abelian subgroup $h$ of group $g$‎. ‎the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$‎. ‎moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x^{n}yeq yx^{n}$‎. ‎in fact‎, ‎the relative n-th commutativity degree‎, ‎$p_{n}(h,g)$ the probability that n-th power of an element of the subgroup $h$ commutes with another random element of the group $g$ and the non-commuting graph were the keys to construct such a graph‎. ‎it is proved that two isoclinic non-abelian groups have isomorphic graphs under special conditions‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

Relative N-th Non-commuting Graphs of Finite Groups

Suppose n is a fixed positive integer. We introduce the relative n-th non-commuting graph ΓH,G, associated to the nonabelian subgroup H of group G. The vertex set is G \ C H,G in which C H,G = {x ∈ G : [x, y] = 1 and [x, y] = 1 for all y ∈ H}. Moreover, {x, y} is an edge if x or y belong to H and xy 6= yx or xy 6= yx. In fact, the relative n-th commutativity degree, Pn(H,G) the probability that...

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

متن کامل

Relative non-Normal Graphs of a Subgroup of Finite Groups

Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...

متن کامل

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 39

شماره 4 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023