rigid dualizing complexes

نویسندگان

a. neeman

چکیده

let $x$ be a sufficiently nice scheme. we survey some recent progress on dualizing complexes. it turns out that a complex in $kinj x$ is dualizing if and only if tensor product with it induces an equivalence of categories from murfet's new category $kmpr x$ to the category $kinj x$. in these terms, it becomes interesting to wonder how to glue such equivalences.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIGID DUALIZING COMPLEXES

Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.

متن کامل

Rigid Dualizing Complexes on Schemes

In this paper we present a new approach to Grothendieck duality on schemes. Our approach is based on the idea of rigid dualizing complexes, which was introduced by Van den Bergh in the context of noncommutative algebraic geometry. We obtain most of the important features of Grothendieck duality, yet manage to avoid lengthy and difficult compatibility verifications. Our results apply to finite t...

متن کامل

Recognizing Dualizing Complexes

Let A be a noetherian local commutative ring and let M be a suitable complex of A-modules. This paper proves that M is a dualizing complex for A if and only if the trivial extension A ⋉M is a Gorenstein Differential Graded Algebra. As a corollary follows that A has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra. Let A be a noetherian local ...

متن کامل

. A G ] 2 6 Ja n 20 06 RIGID DUALIZING COMPLEXES OVER COMMUTATIVE RINGS

In this paper we present a new approach to Grothendieck duality over commutative rings. Our approach is based on the idea of rigid dualizing complexes, which was introduced by Van den Bergh in the context of noncommutative algebraic geometry. We obtain many of the important local features of Grothendieck duality, yet manage to avoid lengthy and difficult compatibility verifications. Our results...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 37

شماره No. 2 2011

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023