on generalized left (alpha, beta)-derivations in rings
نویسندگان
چکیده
let $r$ be a 2-torsion free ring and $u$ be a square closed lie ideal of $r$. suppose that $alpha, beta$ are automorphisms of $r$. an additive mapping $delta: r longrightarrow r$ is said to be a jordan left $(alpha,beta)$-derivation of $r$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin r$. in this paper it is established that if $r$ admits an additive mapping $g : rlongrightarrow r$ satisfying $g(u^2)=alpha(u)g(u)+alpha(u)delta(u)$ for all $uin u$ and a jordan left $(alpha,alpha)$-derivation $delta$; and $u$ has a commutator which is not a left zero divisor, then $g(uv)=alpha(u)g(v)+alpha(v)delta(u)$ for all $u, vin u$. finally, in the case of prime ring $r$ it is proved that if $g: r longrightarrow r$ is an additive mapping satisfying $g(xy)=alpha(x)g(y)+beta(y)delta(x)$ for all $x,y in r $ and a left $(alpha, beta)$-derivation $delta$ of $r$ such that $g$ also acts as a homomorphism or as an linebreak anti-homomorphism on a nonzero ideal $i$ of $r$, then either $r$ is commutative or $delta=0$ ~on $r$.
منابع مشابه
On generalized left (alpha, beta)-derivations in rings
Let $R$ be a 2-torsion free ring and $U$ be a square closed Lie ideal of $R$. Suppose that $alpha, beta$ are automorphisms of $R$. An additive mapping $delta: R longrightarrow R$ is said to be a Jordan left $(alpha,beta)$-derivation of $R$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin R$. In this paper it is established that if $R$ admits an additive mapping $G : Rlongrigh...
متن کاملOn Jordan left derivations and generalized Jordan left derivations of matrix rings
Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...
متن کاملLeft Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملon jordan left derivations and generalized jordan left derivations of matrix rings
abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n 1, then any jordan left derivation on the ring tn(r) of all n×n up...
متن کاملLahcen Oukhtite GENERALIZED JORDAN LEFT DERIVATIONS IN RINGS WITH INVOLUTION
In the present paper we study generalized left derivations on Lie ideals of rings with involution. Some of our results extend other ones proven previously just for the action of generalized left derivations on the whole ring. Furthermore, we prove that every generalized Jordan left derivation on a 2-torsion free ∗-prime ring with involution is a generalized left derivation.
متن کاملGeneralized Derivations on Prime Near Rings
Let N be a near ring. An additive mapping f : N → N is said to be a right generalized (resp., left generalized) derivation with associated derivation d onN if f(xy) = f(x)y + xd(y) (resp., f(xy) = d(x)y + xf(y)) for all x, y ∈ N. A mapping f : N → N is said to be a generalized derivation with associated derivation d onN iff is both a right generalized and a left generalized derivation with asso...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 38
شماره 4 2012
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023