3-difference cordial labeling of some cycle related graphs

نویسندگان

r. ponraj

department of mathematics, sri paramakalyani college,alwarkurichi-627 412, india m. maria adaickalam

department of mathematics, kamarajar government arts college, surandai-627859, india

چکیده

let g be a (p, q) graph. let k be an integer with 2 ≤ k ≤ p and f from v (g) to the set {1, 2, . . . , k} be a map. for each edge uv, assign the label |f(u) − f(v)|. the function f is called a k-difference cordial labeling of g if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. a graph with a k-difference cordial labeling is called a k-difference cordial graph. in this paper we investigate the 3-difference cordial labeling of wheel, helms, flower graph, sunflower graph, lotus inside a circle, closed helm, and double wheel.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

Prime Cordial Labeling For Some Cycle Related Graphs

We present here prime cordial labeling for the graphs obtained by some graph operations on cycle related graphs.

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

Edge pair sum labeling of some cycle related graphs

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of algorithms and computation

جلد ۴۷، شماره ۱، صفحات ۱-۱۰

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023