2-stage explicit total variation diminishing preserving runge-kutta methods

نویسندگان

m. mehdizadeh khalsaraei

university of maragheh f. khodadosti

university of maragheh

چکیده

in this paper, we investigate the total variation diminishing property for a class of 2-stage explicit rung-kutta methods of order two (rk2) when applied to the numerical solution of special nonlinear initial value problems (ivps) for (odes). schemes preserving the essential physical property of diminishing total variation are of great importance in practice. such schemes are free of spurious oscillations around discontinuities.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Total variation diminishing Runge-Kutta schemes

In this paper we further explore a class of high order TVD (total variation diminishing) Runge-Kutta time discretization initialized in a paper by Shu and Osher, suitable for solving hyperbolic conservation laws with stable spatial discretizations. We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time discretization can generate oscillations even for TVD (total...

متن کامل

Global optimization of explicit strong-stability-preserving Runge-Kutta methods

Strong-stability-preserving Runge-Kutta (SSPRK) methods are a type of time discretization method that are widely used, especially for the time evolution of hyperbolic partial differential equations (PDEs). Under a suitable stepsize restriction, these methods share a desirable nonlinear stability property with the underlying PDE; e.g., positivity or stability with respect to total variation. Thi...

متن کامل

Stepsize Restrictions for the Total-Variation-Diminishing Property in General Runge-Kutta Methods

Much attention has been paid in the literature to total-variation-diminishing (TVD) numerical processes in the solution of nonlinear hyperbolic differential equations. For special Runge– Kutta methods, conditions on the stepsize were derived that are sufficient for the TVD property; see, e.g., Shu and Osher [J. Comput. Phys., 77 (1988), pp. 439–471] and Gottlieb and Shu [Math. Comp., 67 (1998),...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
computational methods for differential equations

جلد ۱، شماره ۱، صفحات ۳۰-۳۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023