bifurcation problem for biharmonic asymptotically linear elliptic equations

نویسندگان

jinoos nazari

department of mathematics, islamic azad university, khorasgan(isfahan) branch homa almasieh

department of mathematics, isfahan (khorasgan) branch, islamic azad university, isfahan, iran

چکیده

in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the problem has no solution even in the week sense.we also show that $lambda^{ast}=frac{lambda_{1}}{a}$ if$ lim_{trightarrow infty}f(t)-at=lgeq0$ and for $lambda< lambda^{ast}$, the solution is unique but for $l<0$ and $frac{lambda_{1}}{a}

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

Multiple Solutions for Biharmonic Equations with Asymptotically Linear Nonlinearities

Ruichang Pei1, 2 1 Center for Nonlinear Studies, Northwest University, Xi’an 710069, China 2 Department of Mathematics, Tianshui Normal University, Tianshui 741001, China Correspondence should be addressed to Ruichang Pei, [email protected] Received 26 February 2010; Revised 2 April 2010; Accepted 22 April 2010 Academic Editor: Kanishka Perera Copyright q 2010 Ruichang Pei. This is an open access ...

متن کامل

On an Asymptotically Linear Elliptic Dirichlet Problem

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The conditions imposed on f (x, t) are as follows: (f1) f ∈ C(Ω×R,R); f (x,0) = 0, for all x ∈Ω. (f2) lim|t|→0( f (x, t)/t) = μ, lim|t|→∞( f (x, t)/t) = uniformly in x ∈Ω. Since we assume (f2), problem (1.1) is called asymptotically linear at both zero and infinity. This kind of problems have captured great interest since the pi...

متن کامل

Regularity estimates for fully non linear elliptic equations which are asymptotically convex

In this paper we deliver improved C regularity estimates for solutions to fully nonlinear equations F (Du) = 0, based on asymptotic properties inherited from its recession function F (M) := lim μ→0 μF (μ−1M). MSC: 35B65, 35J70.

متن کامل

Lorentz Estimates for Asymptotically Regular Fully Nonlinear Elliptic Equations

We prove a global Lorentz estimate of the Hessian of strong solutions to a class of asymptotically regular fully nonlinear elliptic equations over a C1,1 smooth bounded domain. Here, the approach of the main proof is based on the Possion’s transform from an asymptotically regular elliptic equation to the regular one.

متن کامل

Asymptotically Linear Solutions for Some Linear Fractional Differential Equations

and Applied Analysis 3 The first variant of differential operator was used in 13 to study the existence of solutions x t of nonlinear fractional differential equations that obey the restrictions x t −→ 1 when t −→ ∞, x′ ∈ ( L1 ∩ L∞ ) 0, ∞ ,R . 1.5 The second variant of differential operator, see 14 , was employed to prove that, for any real numbers x0, x1, the linear fractional differential equ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نظریه تقریب و کاربرد های آن

جلد ۱۱، شماره ۱، صفحات ۱۳-۳۷

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023