optimization of bistability in nonlinear chalcogenide fiber bragg grating for all optical switch and memory applications

نویسندگان

elham yousefi

mohsen hatami

sajjad dehghani

چکیده

we solve the coupled mode equations governing the chalcogenide nonlinear fiber bragg gratings (fbgs) numerically, and obtain the bistability characteristics. the characteristics of the chalcogenide nonlinear fbgs such as: switching threshold intensity, bistability interval, on-off switching ratio are studied. the effects of fbg length and its third order nonlinear refractive index on fbg characteristics are investigated. we obtain an interesting result that independent of the third order nonlinear refractive index; there exists an optimum fbg length of about 6 mm at which the on-off switching ratio becomes maximized. it is also found that by increasing the nonlinearity, the maximum value of on-off switching ratio decreases. the results of this paper can be mainly used for designing all optical switches and memories.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Optimization of Apodized Fiber Bragg Grating for Sensing Applications

This paper presents the modeling and characterization of an Apodized optical fiber Bragg grating for maximum reflectivity and minimum side lobe power wastage and narrow spectral response. The modeling is based upon coupled mode theory together with transfer matrix method. This matrix approach is effective at treating a single grating as a series of separate

متن کامل

Unique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating

In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...

متن کامل

All-solid all-chalcogenide microstructured optical fiber.

The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measuremen...

متن کامل

Theory of Fiber Optical Bragg Grating- Revisited

The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivi...

متن کامل

Fiber-Bragg-Grating Based Optical Amplifiers

In this chapter, we propose several schemes for fiber amplifiers which are all using fiber Bragg gratings (FBGs) as the key elements for their advantages of better uniformity, higher contrast ratio and lower cost. Several applications using FBG-based fiber amplifiers are also introduced. Therefore, this chapter initiates the overview of FBGs characteristics in Sec. 1, then addresses the FBGs pl...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of optics and photonics

جلد ۱۱، شماره ۱، صفحات ۴۹-۵۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023