direct and fixed point methods approach to the generalized hyers–ulam stability for a functional equation having monomials as solutions

نویسندگان

h. azadi kenary

چکیده

the main goal of this paper is the study of the generalized hyers-ulam stability of the following functionalequation f (2x  y)  f (2x  y)  (n 1)(n  2)(n  3) f ( y)  2n2 f (x  y)  f (x  y)  6 f (x) where n  1,2,3,4 , in non–archimedean spaces, by using direct and fixed point methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS

The fixed point alternative methods are implemented to giveHyers-Ulam  stability for  the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$   in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces).  This methodintroduces a met...

متن کامل

Hyperstability of some functional equation on restricted domain‎: direct and fixed point methods

The study of stability problems of functional equations was motivated by a question of S.M. Ulam asked in 1940. The first result giving answer to this question is due to D.H. Hyers. Subsequently, his result was extended and generalized in several ways.We prove some hyperstability results for the equation g(ax+by)+g(cx+dy)=Ag(x)+Bg(y)on restricted domain. Namely, we show, under some weak natural...

متن کامل

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

A Fixed Point Approach to the Stability of a Generalized Cauchy Functional Equation

We investigate the following generalized Cauchy functional equation f(αx+ βy) = αf(x) + βf(y) where α, β ∈ R \ {0}, and use a fixed point method to prove its generalized Hyers–Ulam–Rassias stability in Banach modules over a C∗-algebra.

متن کامل

A fixed point approach to the stability of additive-quadratic-quartic functional equations

In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.

متن کامل

A Fixed Point Approach to the Stability of a Mixed Type Additive and Quadratic Functional Equation

In this paper, we investigate the stability problems for a functional equation f(ax + y) + af(x − y) − a2+3a 2 f(x) −a(a−1) 2 f(−x)− f(y) − af(−y) = 0 by using the fixed point method. Mathematics Subject Classification: Primary 39B82, 39B62; Secondary 47H10

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 35

شماره 4 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023