pantic b-spline wavelets and their application for solving linear integral equations

نویسندگان

a. askari-hemmat

چکیده

in this work we deal with the question: how can one improve the approximation level for some nonlinear integral equations? good candidates for this aim are semi orthogonal b-spline scaling functions and their duals. although there are different works in this area, only b-spline of degree at most 2 are used for this approximation. here we compute b-spline scaling functions of degree 4 and their duals, then we will show that, by using them, one can have better approximation results for the solution of integral equations in comparison with less degrees or other kinds of scaling functions. some numerical examples show their attractiveness and usefulness

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Semiorthogonal B-Spline Wavelets for the Solutions of Linear Second Kind Fredholm Integral Equations

In this paper, the linear semiorthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations of the second kind. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computatio...

متن کامل

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

B-spline Method for Solving Fredholm Integral Equations of the First ‎Kind

‎‎‎In this paper‎, we use the collocation method for to find an approximate solution of the problem by cubic B-spline basis.‎ The proposed method as a basic function led matrix systems, including band matrices and smoothness and capability to handle low calculative costly. ‎The absolute errors in the solution are compared to existing methods to verify the accuracy and convergent nature of propo...

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

SPLINE COLLOCATION FOR NONLINEAR FREDHOLM INTEGRAL EQUATIONS

The collocation method based on cubic B-spline, is developed to approximate the solution of second kind nonlinear Fredholm integral equations. First of all, we collocate the solution by B-spline collocation method then the Newton-Cotes formula use to approximate the integrand. Convergence analysis has been investigated and proved that the quadrature rule is third order convergent. The presented...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 36

شماره 1 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023