on the harmonic index and harmonic polynomial of caterpillars with diameter four

نویسندگان

m. a. iranmanesh

m. saheli

چکیده

the harmonic index h(g) , of a graph g is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in e(g), where deg (u) denotes the degree of a vertex u in v(g). in this paper we define the harmonic polynomial of g. we present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in caterpillars withf diameter 4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index H(G) , of a graph G is defined as the sum of weights 2/(deg(u)+deg(v)) of all edges in E(G), where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G. We present explicit formula for the values of harmonic polynomial for several families of specific graphs and we find the lower and upper bound for harmonic index in Caterpill...

متن کامل

On the harmonic index and harmonic polynomial of Caterpillars with diameter four

The harmonic index ) (G H , of a graph G is defined as the sum of weights 1 )) deg( ) (deg( 2   v u of all edges in ) (G E , where deg (u) denotes the degree of a vertex u in V(G). In this paper we define the harmonic polynomial of G as      ) ( 1 ) deg( ) deg( 2 ) , ( G E uv v u x x G H , where   1 0 ) ( ) , ( G H dx x G H . We present explicit formula for the values of harmonic polyn...

متن کامل

On Harmonic Index and Diameter of Unicyclic Graphs

The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)}  $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...

متن کامل

On the harmonic index of bicyclic graphs

The harmonic index of a graph $G$, denoted by $H(G)$, is defined asthe sum of weights $2/[d(u)+d(v)]$ over all edges $uv$ of $G$, where$d(u)$ denotes the degree of a vertex $u$. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. {bf 12} (2013) 716--726] proved that for any bicyclic graph $G$ of order $ngeq 4$, $H(G)le frac{n}{2}-frac{1}{15}$ and characterize all extremal bicyclic graphs.In this...

متن کامل

on the harmonic index of graph operations

‎the harmonic index of a connected graph $g$‎, ‎denoted by $h(g)$‎, ‎is‎ ‎defined as $h(g)=sum_{uvin e(g)}frac{2}{d_u+d_v}$‎ ‎where $d_v$ is the degree of a vertex $v$ in g‎. ‎in this paper‎, ‎expressions for the harary indices of the‎ ‎join‎, ‎corona product‎, ‎cartesian product‎, ‎composition and symmetric difference of graphs are‎ ‎derived‎.

متن کامل

Harmonic Functions with Polynomial Growth

Twenty years ago Yau generalized the classical Liouville theo rem of complex analysis to open manifolds with nonnegative Ricci curva ture Speci cally he proved that a positive harmonic function on such a manifold must be constant This theorem of Yau was considerably generalized by Cheng Yau see by means of a gradient estimate which implies the Harnack inequality As a consequence of this gradien...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of mathematical chemistry

ناشر: university of kashan

ISSN 2228-6489

دوره 6

شماره 1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023