comparison of genomic evaluation methods in complex traits with different genetic architecture

نویسندگان

رستم عبداللهی آرپناهی

دانشجوی دکتری گروه علوم دامی، دانشکدۀ علوم زراعی و دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج ـ ایران عباس پاکدل

دانشیار گروه علوم دامی، دانشکدۀ علوم زراعی و دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج ـ ایران اردشیر نجاتی جوارمی

دانشیار گروه علوم دامی، دانشکدۀ علوم زراعی و دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج ـ ایران محمد مرادی شهربابک

استاد گروه علوم دامی، دانشکدۀ علوم زراعی و دامی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج ـ ایران

چکیده

the objective of this study was to compare six statistical methods for prediction of genomic breedingvalues for traits with different genetic architecture in term of gene effects distributions and number ofquantitative traits loci (qtls). a genome consisted of 500 bi-allelic single nucleotide polymorphism(snp) markers distributed over a chromosomes with 100 cm length was simulated. three different geneeffects distributions (uniform, normal and gamma) were considered. number of qtls varied from 50 to200. finally, nine quantitative traits with different genetic architecture were generated. the performanceof six statistical methods of genomic prediction that differ with respect to assumptions regardingdistribution of marker effects, including i) genomic best linear unbiased prediction (gblup), ii) ridgeregression best linear unbiased prediction (rrblup), iii) bayes a, iv) bayes b, v) bayes c, and vi)bayesian least absolute shrinkage and selection operator (bayes l) are presented. the accuracy ofprediction declined significantly over generations (p< 0.05) but bayesian methods outperformed gblupand rrblup in persistence of accuracy of genomic estimated breeding values over generations.bayesian methods were superior to gblup and rrblup when the gene effects distribution generatedfrom gamma distribution. the highest accuracy of genomic breeding values was observed when the geneeffects come from normal distribution. in all statistical evaluation methods with increasing the number ofqtls towards 200, the accuracy of predicted genomic values has been decreased. in general, bayesianand gblup methods performed better in prediction than rrblup method. these results gave someevidences that when the genetic architecture of quantitative traits deviated from infinitesimal modelassumptions, bayesian methods usually perform better than gblup and rr-blup.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

comparative dna interaction studies of antiviral drug, zidovudine and its complex using different instrumental methods

هدف از این مطالعه بررسی امکان استفاده از داروهای شناخته شده در درمان سایر بیماریها به عنوان داروهای ضد سرطان است. همچنین با استفاده از این داروها در ساختمان کمپلکس فلز می توان شاخص های دارویی بدست آمده را بررسی نمود. داروی ضد ویروس ایدز(hiv)به نام زیدوودین(azt)انتخاب و.کمپلکس.محلول.در.آب[pt(azt)2]cl2سنتزو به روشهای مختلف فیزیکی و شیمیایی شناسایی گردید. بر هم کنش مقایسه ای این دارو و کمپلکس پلا...

15 صفحه اول

Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive

A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Accuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods

The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...

متن کامل

Mapping the genetic architecture of complex traits in experimental populations

SUMMARY Understanding how interactions among set of genes affect diverse phenotypes is having a greater impact on biomedical research, agriculture and evolutionary biology. Mapping and characterizing the isolated effects of single quantitative trait locus (QTL) is a first step, but we also need to assemble networks of QTLs and define non-additive interactions (epistasis) together with a host of...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
تولیدات دامی

جلد ۱۵، شماره ۱، صفحات ۶۵-۷۷

کلمات کلیدی
the objective of this study was to compare six statistical methods for prediction of genomic breedingvalues for traits with different genetic architecture in term of gene effects distributions and number ofquantitative traits loci (qtls). a genome consisted of 500 bi allelic single nucleotide polymorphism(snp) markers distributed over a chromosomes with 100 cm length was simulated. three different geneeffects distributions (uniform normal and gamma) were considered. number of qtls varied from 50 to200. finally nine quantitative traits with different genetic architecture were generated. the performanceof six statistical methods of genomic prediction that differ with respect to assumptions regardingdistribution of marker effects including i) genomic best linear unbiased prediction (gblup) ii) ridgeregression best linear unbiased prediction (rrblup) iii) bayes a iv) bayes b v) bayes c and vi)bayesian least absolute shrinkage and selection operator (bayes l) are presented. the accuracy ofprediction declined significantly over generations (p< 0.05) but bayesian methods outperformed gblupand rrblup in persistence of accuracy of genomic estimated breeding values over generations.bayesian methods were superior to gblup and rrblup when the gene effects distribution generatedfrom gamma distribution. the highest accuracy of genomic breeding values was observed when the geneeffects come from normal distribution. in all statistical evaluation methods with increasing the number ofqtls towards 200 the accuracy of predicted genomic values has been decreased. in general bayesianand gblup methods performed better in prediction than rrblup method. these results gave someevidences that when the genetic architecture of quantitative traits deviated from infinitesimal modelassumptions bayesian methods usually perform better than gblup and rr blup.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023