using multiquadric quasi-interpolation for solving kawahara equation
نویسندگان
چکیده
منابع مشابه
Solving partial differential equation by using multiquadric quasi-interpolation
In this paper, we use a kind of univariate multiquadric (MQ) quasi-interpolation to solve partial differential equation (PDE). We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the r...
متن کاملApplying Multiquadric Quasi-Interpolation to Solve KdV Equation
Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic conservation laws and Burgers’...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملSOLVING INTEGRO-DIFFERENTIAL EQUATION BY USING B- SPLINE INTERPOLATION
In this paper a numerical technique based on the B-spline method is presented for the solution of Fredholm integro-differential equations. To illustrate the efficiency of the method some examples are introduced and the results are compared with the exact solution.
متن کاملA Multiquadric Interpolation Method for Solving Initial Value Problems
In this paper, an interpolation method for solving linear diierential equations was developed using multiquadric scheme. Unlike most iterative formula , this method provides a global interpolation formulae for the solution. Numerical examples show that this method ooers a higher degree of accuracy than Runge-Kutta formula and the iterative multistep methods developed by Hyman (1978).
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of industrial mathematicsناشر: science and research branch, islamic azad university, tehran, iran
ISSN 2008-5621
دوره 3
شماره 2 2011
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023