an empirical comparison between grade of membership and principal component analysis
نویسندگان
چکیده
t is the purpose of this paper to contribute to the discussion initiated bywachter about the parallelism between principal component (pc) and atypological grade of membership (gom) analysis. the author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. our contribution to the subject is also empirical. it relies ona dataset from a survey which was especially designed to study the reward ofskills in the banking sector in portugal. the statistical data comprisethirty polythomous variables and were decomposed in four typologies using anoptimality criterion. the empirical evidence shows a high correlationbetween the first pc scores and individual gom scores. no correlation withthe remaining pcs was found, however. in addtion to that, the first pc alsoproved effective to rank individuals by skill following the particularity ofdata distribution meanwhile unveiled in gom analysis.
منابع مشابه
An Empirical Comparison between Grade of Membership and Principal Component Analysis
t is the purpose of this paper to contribute to the discussion initiated byWachter about the parallelism between principal component (PC) and atypological grade of membership (GoM) analysis. The author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. Our contribution to the subject is also...
متن کاملA Comparison between Principal Component Analysis and Factor Analysis
The principal component analysis (also named Karhunen–Loève transformation) and the factor analysis are both tools of the multivariate statistics, more precisely the exploratory data analysis. They are used e.g. in data mining or machine learning. Although they share the same goal, they reach it with different methods. Over the years, some misunderstandings came up, how these methods differ fro...
متن کاملMembership-set Estimation Using Random Scanning and Principal Component Analysis
A set-theoretic approach to parameter estimation based on the bounded-error concept is an appropriate choice when incomplete knowledge of observation error statistics and unavoidable structural model error invalidate the presuppositions of stochastic methods. Within this class the estimation of non-linear-in-theparameters models is examined. This situation frequently occurs in modelling natural...
متن کاملComparison between principal component analysis and independent component analysis in electroencephalograms modelling.
Principal Component Analysis (PCA) is a classical technique in statistical data analysis, feature extraction and data reduction, aiming at explaining observed signals as a linear combination of orthogonal principal components. Independent Component Analysis (ICA) is a technique of array processing and data analysis, aiming at recovering unobserved signals or 'sources' from observed mixtures, ex...
متن کاملAn application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case
Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of fuzzy systemsناشر: university of sistan and baluchestan
ISSN 1735-0654
دوره 10
شماره 2 2013
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023