a note on convergence in fuzzy metric spaces
نویسندگان
چکیده
the sequential $p$-convergence in a fuzzy metric space, in the sense of george and veeramani, was introduced by d. mihet as a weaker concept than convergence. here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. in such a case $m$ is called an $s$-fuzzy metric. if $(n_m,ast)$ is a fuzzy metric on $x$ where $n_m(x,y)=bigwedge{m(x,y,t):t>0}$ then it is proved that the topologies deduced from $m$ and $n_m$ coincide if and only if $m$ is an $s$-fuzzy metric.
منابع مشابه
A note on convergence in fuzzy metric spaces
The sequential $p$-convergence in a fuzzy metric space, in the sense of George and Veeramani, was introduced by D. Mihet as a weaker concept than convergence. Here we introduce a stronger concept called $s$-convergence, and we characterize those fuzzy metric spaces in which convergent sequences are $s$-convergent. In such a case $M$ is called an $s$-fuzzy metric. If $(N_M,ast)$ is a fuzzy metri...
متن کاملA note on fuzzy contractive mappings in fuzzy metric spaces
Definition 1.1 (see [1]). A triple (X ,M,∗), where X is an arbitrary set, ∗ is a continuous t-norm, andM is a fuzzy set on X2× (0,∞), is said to be a fuzzy metric space (in the sense of George and Veeramani) if the following conditions are satisfied for all x, y ∈ X and s, t > 0: (GV-1) M(x, y, t) > 0; (GV-2) M(x, y, t)= 1 if and only if x = y; (GV-3) M(x, y, t)=M(y,x, t); (GV-4) M(x, y,·) is c...
متن کاملA Short Note on the Orthogonality in Fuzzy Metric Spaces
The purpose of this paper is to introduce and discuss the concept of orthogonality in the fuzzy metric spaces. At last we introduce and discuss the concept of orthogonality in the fuzzy normed spaces, and obtain some results on orthogonality in fuzzy normed spaces similar to orthogonality in normed spaces.
متن کاملOn metric spaces induced by fuzzy metric spaces
For a class of fuzzy metric spaces (in the sense of George and Veeramani) with an H-type t-norm, we present a method to construct a metric on a fuzzy metric space. The induced metric space shares many important properties with the given fuzzy metric space. Specifically, they generate the same topology, and have the same completeness. Our results can give the constructive proofs to some probl...
متن کاملUniformities in fuzzy metric spaces
The aim of this paper is to study induced (quasi-)uniformities in Kramosil and Michalek's fuzzy metric spaces. Firstly, $I$-uniformity in the sense of J. Guti'{e}rrez Garc'{i}a and $I$-neighborhood system in the sense of H"{o}hle and u{S}ostak are induced by the given fuzzy metric. It is shown that the fuzzy metric and the induced $I$-uniformity will generate the same $I$-neighborhood system. ...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of fuzzy systemsناشر: university of sistan and baluchestan
ISSN 1735-0654
دوره 11
شماره 4 2014
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023