fixed point theorems for α-ψ-ϕ-contractive integral type mappings
نویسندگان
چکیده
in this paper, we introduce a new concept of - -ϕ-contractive integral type mappings and establish some new xed point theorems in complete metric spaces.
منابع مشابه
Fixed point theorems for α-ψ-ϕ-contractive integral type mappings
In this paper, we introduce a new concept of α-ψ-ϕ-contractive integral type mappings and establish some new fixed point theorems in complete metric spaces.
متن کاملCOUPLED FIXED POINT THEOREMS FOR GENERALIZED Φ-MAPPINGS SATISFYING CONTRACTIVE CONDITION OF INTEGRAL TYPE ON CONE METRIC SPACES
In this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.
متن کاملFixed point theorems for $alpha$-contractive mappings
In this paper we prove existence the common fixed point with different conditions for $alpha-psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.
متن کاملON COMMON FIXED POINT THEOREMS FOR (ψ,φ)- GENERALIZED f-WEAKLY CONTRACTIVE MAPPINGS
In this paper, we present some common fixed point theorems for (ψ,φ)-generalized f -weakly contractive mappings in metric and ordered metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give an example to illustrate our results.
متن کاملcoupled fixed point theorems for generalized φ-mappings satisfying contractive condition of integral type on cone metric spaces
in this paper, we unify, extend and generalize some results on coupled fixed point theorems of generalized φ- mappings with some applications to fixed points of integral type mappings in cone metric spaces.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of linear and topological algebra (jlta)جلد ۳، شماره ۰۴، صفحات ۲۱۹-۲۳۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023