on categories of merotopic, nearness, and filter algebras

نویسندگان

v gompa

troy university. usa

چکیده

we study algebraic properties of categories of merotopic, nearness, and filter algebras. we show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. the forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the category of filters has a left adjoint.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On categories of merotopic, nearness, and filter algebras

We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...

متن کامل

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

cluster algebras and cluster categories

these are notes from introductory survey lectures given at the institute for studies in theoretical physics and mathematics (ipm), teheran, in 2008 and 2010. we present the definition and the fundamental properties of fomin-zelevinsky’s cluster algebras. then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generators of ...

متن کامل

On Triangulated Categories and Enveloping Algebras

By using the approach to Hall algebras arising in homologically finite triangulated categories in [9], we find an “almost” associative multiplication structure for indecomposable objects in a 2-period triangulated category. As an application, we give a new proof of the theorem of Peng and Xiao in [6] which provides a way of constructing all symmetrizable Kac-Moody Lie algebras from two periodic...

متن کامل

Group Actions on Algebras and Module Categories

Let k be a field and A a finite dimensional (associative with 1) k-algebra. By modA we denote the category of finite dimensional left A-modules. In many important situations we may suppose that A is presented as a quiver with relations (Q, I) (e.g. if k is algebraically closed, then A is Morita equivalent to kQ/I). We recall that if A is presented by (Q, I), then Q is a finite quiver and I is a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of linear and topological algebra (jlta)

جلد ۵، شماره ۰۲، صفحات ۱۱۱-۱۱۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023