a hybrid neural networks-coevolution genetic algorithm for multi variables robust design problem in quality engineering

نویسندگان

محمد رضا مهرگان

علیرضا فراست

چکیده

in this study, a hybrid algorithm is presented to tackle multi-variables robust design problem. the proposed algorithm comprises neural networks (nns) and co-evolution genetic algorithm (cga) in which neural networks are as a function approximation tool used to estimate a map between process variables. furthermore, in order to make a robust optimization of response variables, co-evolution algorithm is applied to solve constructed model of process. results of cga are compared with genetic algorithm (ga). this algorithm is tested in a case study of open-end spinning process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid metaheuristic algorithm for the robust pollution-routing problem

Emissions resulted from transportation activities may lead to dangerous effects on the whole environment and human health. According to sustainability principles, in recent years researchers attempt to consider the environmental burden of logistics activities in traditional logistics problems such as vehicle routing problems (VRPs). The pollution-routing problem (PRP) is an extension of the VRP...

متن کامل

Applying robust multi-response quality engineering for parameter selection using a novel neural-genetic algorithm

This study presents a neural–genetic algorithm to solve the selection problem of manufacturing process parameters. The proposed algorithm is a combination of artificial neural network (ANN) and genetic algorithms (GAs). In addition, the neural network is used to formulate a fitness function for predicting the value of the response based on the parameter settings. GAs then take the fitness funct...

متن کامل

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

Multi-objective hybrid genetic algorithm for bicriteria network design problem

This paper considers the Bicriteria Network Design Problem (bNDP) with the two conflicting objectives of minimizing cost and maximizing flow. Network design problems where even one flow measure be maximized, are often NP-hard problems. But, in real-life applications, it is often the case that the network to be built is required to optimize multi-criteria simultaneously. Thus the calculation of ...

متن کامل

A HYBRID GENETIC ALGORITHM FOR A BI-OBJECTIVE SCHEDULING PROBLEM IN A FLEXIBLE MANUFACTURING CELL

 This paper considers a bi-objective scheduling problem in a flexible manufacturing cell (FMC) which minimizes the maximum completion time (i.e., makespan) and maximum tardiness simultaneously. A new mathematical model is considered to reflect all aspect of the manufacturing cell. This type of scheduling problem is known to be NP-hard. To cope with the complexity of such a hard problem, a genet...

متن کامل

Using Genetic Algorithm to Robust Multi Objective Optimization of Maintenance Scheduling Considering Engineering Insurance

Efficient and on-time maintenance plays a crucial role inreducing cost and increasing the market share of an industrial unit. Preventivemaintenance is a broad term that encompasses a set of activitiesaimed at improving the overall reliability and availability of a systembefore machinery breakdown. The previous studies have addressed thescheduling of preventive maintenance. These studies have co...

متن کامل

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023