determinate aster satellite data capability and classification and regression tree and random forest algorithm for forest type mapping

نویسندگان

اصغر فلاح

دانشیار گروه علوم جنگل، دانشکدة منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران سیاوش کلبی

دانشجوی دکتری گروه علوم جنگل، دانشکدة منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران شعبان شتایی

دانشیار گروه جنگل‏داری، دانشکدة منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران امید کرمی

دانشجوی دکتری گروه علوم جنگل، دانشکدة منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

recognition equal units and segregation them and upshot planning per units most basic method for management forest units. aim this study presentation and comparison classification and regression tree (cart) and random forest (rf) algorithm for forest type mapping using aster satellite data in district one didactic and research forest's darabkola. in start using inventory network 500* 350 m, take number 150 sample plat in over district. after accomplish geometric correction and reduce atmospheric effect on image processing bands rationing, create general vegetation indices, principal component analysis and tesslatcap index. after extraction spectrum values relevant by sample plats fabric and processing bands, classification values other pixel accomplish using investigating algorithms. evaluation accuracy results classification accomplish by some sample plat that not participate in process classification. the result showed preparation map using rf with overall accuracy 66% and kappa coefficient 0.57 than classification and regression tree with overall accuracy 58% and kappa coefficient 0.49 has superior accuracy. totality result showed using above algorithm may increased accuracy forest type map.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...

متن کامل

Random Forest Algorithm for Land Cover Classification

Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...

متن کامل

Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data

We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables derived from discrete-return lidar da...

متن کامل

Application of Decision-tree Techniques to Forest Group and Basal Area Mapping Using Satellite Imagery and Forest Inventory Data

Accurate, current, and cost-effective fire fuel data are required by management and fire science communities for use in reducing wildland fire hazards over large areas. In this paper we present results of applying decision-tree techniques to mapping vegetation parameters (such as vegetation types and canopy structure classification) required for fire fuel characterization. Specifically, we pres...

متن کامل

Classification of genome data using Random Forest Algorithm: Review

Random Forest is a popular machine learning tool for classification of large datasets. The Dataset classified with Random Forest Algorithm (RF) are correlated and the interaction between the features leads to the study of genome interaction. The review is about RF with respect to its variable selection property which reduces the large datasets into relevant samples and predicting the accuracy f...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
جنگل و فرآورده های چوب

جلد ۶۷، شماره ۴، صفحات ۵۷۳-۵۸۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023