complete characterization of the mordell-weil group of some families of elliptic curves
نویسندگان
چکیده
the mordell-weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. in our previous paper, h. daghigh, and s. didari, on the elliptic curves of the form $ y^2=x^3-3px$, bull. iranian math. soc. 40 (2014), no. 5, 1119--1133., using selmer groups, we have shown that for a prime $p$ the rank of elliptic curve $y^2=x^3-3px$ is at most two. in this paper we go further, and using height function, we will determine the mordell-weil group of a family of elliptic curves of the form $y^2=x^3-3nx$, and give a set of its generators under certain conditions. we will introduce an infinite family of elliptic curves with rank at least two. the full mordell-weil group and the generators of a family (which is expected to be infinite under the assumption of a standard conjecture) of elliptic curves with exact rank two will be described.
منابع مشابه
Complete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملElliptic Curves Group Law and Mordell-weil
This paper assumes no background on elliptic curves and culminates with a proof of the Mordell-Weil theorem. The Riemann-Roch and Dirichlet unit theorem are recalled but used without proof, but everything else is self-contained. After some elementary properties of elliptic curves are given, the group structure is explored in detail.
متن کاملOn the Mordell–weil Group of the Elliptic Curve
We study an infinite family of Mordell curves (i.e. the elliptic curves in the form y = x + n, n ∈ Z) over Q with three explicit integral points. We show that the points are independent in certain cases. We describe how to compute bounds of the canonical heights of the points. Using the result we show that any pair in the three points can always be a part of a basis of the free part of the Mord...
متن کاملSolution to the Inverse Mordell-weil Problem for Elliptic Curves
In [Ro76], M. Rosen showed that for any countable commutative group G, there is a field K, an elliptic curve E/K and a surjective group homomorphism E(K) → G. From this he deduced that any countable commutative group whatsoever is the ideal class group of an elliptic Dedekind domain – the ring of all functions on an elliptic curve which are regular away from some (fixed, possibly infinite) set ...
متن کاملsynthesis and characterization of some macrocyclic schiff bases
ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...
15 صفحه اولHodge Theory and the Mordell-weil Rank of Elliptic Curves over Extensions of Function Fields
We use Hodge theory to prove a new upper bound on the ranks of Mordell-Weil groups for elliptic curves over function fields after regular geometrically Galois extensions of the base field, improving on previous results of Silverman and Ellenberg, when the base field has characteristic zero and the supports of the conductor of the elliptic curve and of the ramification divisor of the extension a...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyجلد ۴۲، شماره ۳، صفحات ۵۸۵-۵۹۴
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023