relative (co)homology of $f$-gorenstein modules
نویسندگان
چکیده
we investigate the relative cohomology and relative homology theories of $f$-gorenstein modules, consider the relations between classical and $f$-gorenstein (co)homology theories.
منابع مشابه
Relative (co)homology of $F$-Gorenstein modules
We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.
متن کاملF-regularity relative to modules
In this paper we will generalize some of known results on the tight closure of an ideal to the tight closure of an ideal relative to a module .
متن کاملF -stable Submodules of Top Local Cohomology Modules of Gorenstein Rings
This paper applies G. Lyubeznik’s notion of F -finite modules to describe in a very down-to-earth manner certain annihilator submodules of some top local cohomology modules over Gorenstein rings. As a consequence we obtain an explicit description of the test ideal of Gorenstein rings in terms of ideals in a regular ring.
متن کاملRelative Singularity Categories and Gorenstein-projective Modules
We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable cat...
متن کاملGorenstein Projective, Injective and Flat Modules Relative to Semidualizing Modules
In this paper we study some properties of GC -projective, injective and flat modules, where C is a semidualizing module and we discuss some connections between GC -projective, injective and flat modules , and we consider these properties under change of rings such that completions of rings, Morita equivalences and the localizations.
متن کاملOn the Cohomology of Relative Hopf Modules
Let H be a Hopf algebra over a field k, and A an Hcomodule algebra. The categories of comodules and relative Hopf modules are then Grothendieck categories with enough injectives. We study the derived functors of the associated Hom functors, and of the coinvariants functor, and discuss spectral sequences that connect them. We also discuss when the coinvariants functor preserves injectives.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyجلد ۴۲، شماره ۴، صفحات ۸۹۱-۹۰۲
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023