Zonal Polynomials and Hypergeometric Functions of Quaternion Matrix Argument
نویسندگان
چکیده
منابع مشابه
Zonal polynomials and hypergeometric functions of quaternion matrix argument ∗
We define zonal polynomials of quaternion matrix argument and deduce some important formulae of zonal polynomials and hypergeometric functions of quaternion matrix argument. As an application, we give the distributions of the largest and smallest eigenvalues of a quaternion central Wishart matrix W ∼ QW (n,Σ), respectively.
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملTotal Positivity Properties of Generalized Hypergeometric Functions of Matrix Argument
In multivariate statistical analysis, several authors have studied the total positivity properties of the generalized (0F1) hypergeometric function of two real symmetric matrix arguments. In this paper, we make use of zonal polynomial expansions to obtain a new proof of a result that these 0F1 functions fail to satisfy certain pairwise total positivity properties; this proof extends both to arb...
متن کاملLog-Convexity Properties of Schur Functions and Generalized Hypergeometric Functions of Matrix Argument
We establish a positivity property for the difference of products of certain Schur functions, sλ(x), where λ varies over a fundamental Weyl chamber in R n and x belongs to the positive orthant in R. Further, we generalize that result to the difference of certain products of arbitrary numbers of Schur functions. We also derive a log-convexity property of the generalized hypergeometric functions ...
متن کاملHigh-Dimensional Random Matrices from the Classical Matrix Groups, and Generalized Hypergeometric Functions of Matrix Argument
Results from the theory of the generalized hypergeometric functions of matrix argument, and the related zonal polynomials, are used to develop a new approach to study the asymptotic distributions of linear functions of uniformly distributed random matrices from the classical compact matrix groups. In particular, we provide a new approach for proving the following result of D’Aristotile, Diaconi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Theory and Methods
سال: 2009
ISSN: 0361-0926,1532-415X
DOI: 10.1080/03610920802379185