Zero–Coupon Yields Estimated by Zero–Degree Splines

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of mouse and human genomes followed by experimental verification yields an estimated 1,019 additional genes.

A primary motivation for sequencing the mouse genome was to accelerate the discovery of mammalian genes by using sequence conservation between mouse and human to identify coding exons. Achieving this goal proved challenging because of the large proportion of the mouse and human genomes that is apparently conserved but apparently does not code for protein. We developed a two-stage procedure that...

متن کامل

Approximation by Conic Splines

We show that the complexity of a parabolic or conic spline approximating a sufficiently smooth curve with non-vanishing curvature to within Hausdorff distance ε is c1ε +O(1), if the spline consists of parabolic arcs, and c2ε + O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the Euclidean and affine curvature of the curve. We also show that...

متن کامل

Interpolation of fuzzy data by using flat end fuzzy splines

In this paper, a new set of spline functions called ``Flat End Fuzzy Spline" is defined to interpolate given fuzzy data. Some important theorems on these splines together with their existence and uniqueness properties are discussed. Then numerical examples are presented to illustrate the differences between of using our spline and other interpolations that have been studied before.

متن کامل

Numerical solution of functional integral equations by using B-splines

This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method can be extended to functional differential and integro-differential equations. For showing efficiency of the method we give some numerical examples.

متن کامل

Interpolation by Convex Quadratic Splines

Algorithms are presented for computing a quadratic spline interpolant with variable knots which preserves the monotonicity and convexity of the data. It is also shown that such a spline may not exist for fixed knots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2018

ISSN: 1556-5068

DOI: 10.2139/ssrn.3419978