منابع مشابه
Zero Sets for Spaces of Analytic Functions
We show that under mild conditions, a Gaussian analytic function F that a.s. does not belong to a given weighted Bergman space or Bargmann–Fock space has the property that a.s. no non-zero function in that space vanishes where F does. This establishes a conjecture of Shapiro (1979) on Bergman spaces and allows us to resolve a question of Zhu (1993) on Bargmann–Fock spaces. We also give a simila...
متن کاملContinuous Convex Sets and Zero Duality Gap for Convex Programs
This article uses classical notions of convex analysis over euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of a convex set, or the inner aperture directions defined by Larman and Brøndsted for the same class of sets, to provide a new zero duality gap criterion for ordinary convex programs. On this ground, we are able to characterize objective functions and respectively feasib...
متن کاملMicro Tangent Sets of Continuous Functions
Motivated by the concept of tangent measures and by H. Fürstenberg’s definition of microsets of a compact set A we introduce micro tangent sets and central micro tangent sets of continuous functions. It turns out that the typical continuous function has a rich (universal) micro tangent set structure at many points. The Brownian motion, on the other hand, with probability one does not have graph...
متن کاملK -Trivial Closed Sets and Continuous Functions
We investigate the notion of K-triviality for closed sets and continuous functions. Every K-trivial closed set contains a K-trivial real. There exists a K-trivial Π 1 class with no computable elements. For any K-trivial degree d, there is a K-trivial continuous function of degree d.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1960
ISSN: 0002-9939
DOI: 10.2307/2034724